
Deploying Apereo CAS
Last generated: October 18, 2018

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Copyright © 2018, The New School. This work is licensed under a Creative

Commons Attribution-ShareAlike 4.0 International License .

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

Table of Contents

Introduction
Overview... 6

SSO environment architecture ... 9

Leveraging the cloud (future) ..11

Setting up the environment
Overview... 14

Initial setup tasks .. 16

Configure time synchronization .. 20

Install Apache Tomcat on the CAS servers
Overview.. 25

Install an entropy daemon ... 27

Install Java .. 29

Install Tomcat... 30

Install Tomcat dependencies ... 31

Organize the installation .. 36

Harden the installation... 39

Configure TLS/SSL settings .. 42

Configure asychronous request support ... 49

Configure X-Forwarded-For header processing.. 51

Tune resource caching settings... 53

Configure asychronous logging support .. 54

Open TLS/SSL port in the firewall ... 55

Configure systemd to start Tomcat .. 56

Test the Tomcat installation ... 59

Distribute the Tomcat installation to the CAS servers ... 63

Configure the load balancers .. 66

Install HTTPD and PHP on the client servers
Overview.. 74

Install software packages .. 75

Configure TLS/SSL and PHP settings... 76

Open HTTP/HTTPS ports in the firewall ... 81

Configure systemd to start HTTPD ... 82

Deploying Apereo CAS PDF last generated: October 18, 2018

The New School - www.newschool.edu i

Test the HTTPD installation ... 83

Building the CAS server
Overview... 86

Create a Maven WAR overlay project .. 88

Build the default server... 91

Configure server properties .. 93

Configure logging settings.. 97

Install and test the CAS application.. 99

Commit changes to Git ... 106

Adding a service registry
Overview... 107

Add the feature and rebuild the server ... 108

Configure the service registry..110

Install and test the service registry ..113

Commit changes to Git ..115

Building the CAS client
Overview..116

Install the mod_auth_cas plugin ..117

Configure HTTPD to use CAS...119

Test the application... 123

Adding LDAP support
Overview... 127

Configuring LDAP authentication
Overview.. 128

Configure Active Directory authentication properties .. 132

Configure Luminis LDAP authentication properties... 136

Configuring LDAP attribute resolution and release
Overview.. 140

Configure attribute resolution .. 144

Update the service registry.. 148

Update the CAS client configuration ... 152

Install and test the application ... 156

Commit changes to git.. 162

Adding MFA support

Deploying Apereo CAS PDF last generated: October 18, 2018

The New School - www.newschool.edu ii

Overview... 163

Configure Duo authentication... 167

Update the CAS client configuration .. 169

Update the service registry... 172

Install and test the application .. 174

Commit changes to Git ... 180

Adding SAML support
Overview... 181

Update the server configuration ... 185

Update the service registry... 188

Install and test the IdP.. 191

Commit changes to Git ... 198

Building the SAML client
Overview... 199

Install the Shibboleth SP .. 200

Configure HTTPD to use the SP .. 206

Configure the SP .. 209

Update the service registry... 213

Install and test the application .. 215

Adding MFA to SAML authentication.. 220

Commit changes to Git ... 222

Enabling the dashboard (adminpages)
Overview... 223

Configure admin pages properties ... 225

Update the service registry... 229

Install and test the application .. 230

Update the load balancer service monitor .. 233

Commit changes to Git ... 235

Building the management webapp
Overview... 236

Create a Maven WAR overlay project .. 237

Build the webapp.. 240

Configure webapp properties ... 242

Configure logging settings.. 245

Update the service registry... 247

Deploying Apereo CAS PDF last generated: October 18, 2018

The New School - www.newschool.edu iii

Install and test the webapp... 248

Commit changes to Git ... 255

Customizing the CAS user interface
Overview... 256

How CAS themes work .. 263

How Thymelaf layouts work ... 268

Add a new theme to the overlay ... 278

Build and deploy the overlay .. 286

Develop the custom theme
Overview.. 290

Update the layout template ... 291

Update the login view .. 305

Update the logout view.. 313

Update other relevant views.. 315

Install and test the final result ... 317

Commit changes to Git ... 320

High availability
Overview... 321

Install and configure MongoDB
Overview.. 323

Install the MongoDB software ... 324

Disable Transparent Huge Pages ... 329

Open MongoDB port in the firewall ... 331

Set up MongoDB authentication.. 335

Create the replica set .. 339

Test the replica set .. 348

Configure MongoDB to use TLS/SSL.. 352

Create the CAS database and user .. 358

Setting up the ticket registry
Overview.. 361

Update the server configuration .. 363

Install and test the application ... 369

Commit changes to Git .. 373

Setting up the service registry
Overview.. 374

Deploying Apereo CAS PDF last generated: October 18, 2018

The New School - www.newschool.edu iv

Update the server configuration .. 375

Load the MongoDB service registry from the JSON service registry 381

Install and test the application ... 385

Commit changes to Git .. 387

Setting up distributed SAML metadata storage
Overview.. 388

Setting up distributed configuration properties
Overview.. 389

Google Apps (G Suite) integration
Overview... 390

Generate keys and certificates ... 394

Configure Google single sign-on .. 397

Install and test the application .. 398

Moving to production
Overview... 400

Configuration changes ... 402

Problems encountered ... 410

About
About The New School... 417

Author information .. 418

Deploying Apereo CAS PDF last generated: October 18, 2018

The New School - www.newschool.edu v

Introduction

Summary: This document provides step-by-step instructions for

setting up an Apereo CAS 5 environment. It was created during the

process of building a brand new development environment to

experiment with many of the new features in this release.

CAS VERSION USED IN THIS DOCUMENT

The instructions, configuration settings, and hyperlink references contained

in this document are based on CAS 5.2.7. Most of the information

presented here is also applicable to the CAS 5.1.x and CAS 5.3.x

branches, with the caveat that some features may not exist in earlier

versions, and the names or values of some configuration settings may have

changed between releases.

The best way to learn about changes from one release to another is to read

Misagh Moayyed’s “Changelog” blog posts. These come out with each

release candidate, and describe the significant changes from the previous

release candidate (cumulatively, the changelogs for the several release

candidates describe the changes from one feature release to the next). To

access these blog posts, go to the Releases section of the CAS GitHub

Repository and search for “Changelog”.

 Warning: The instructions here will not work for building, configuring, or

deploying CAS 6.

Apereo CAS 5 was released in November 2016. The new release improved on

many of the enhancements introduced in the CAS 4 series of releases, and also

introduced several new features that will enable The New School to offer an

improved single sign-on experience to its users.

This document provides step-by-step instructions for setting up Apereo CAS 5. It

was created to record the configuration choices made, and deployment lessons

learned, during the process of building a brand new development environment to

experiment with many of CAS 5’s new features.

The New School’s major implementation goals for this environment are:

• Apply lessons learned from our CAS 3.5 environment

Introduction PDF last generated: October 18, 2018

Deploying Apereo CAS Page 6

https://github.com/apereo/cas/releases
https://github.com/apereo/cas
https://github.com/apereo/cas
https://apereo.github.io/cas/5.2.x/index.html

◦ “If we had it to do over again, we’d do this differently.” This is our

chance.

• High availability (fault-tolerant) everything

◦ Main CAS servers reside behind load balancers

▪ Servers can be rebooted, taken down for upgrade,

additional servers can be added, etc., all transparently to

the users.

◦ Spring Cloud Configuration server

▪ Allows configurations for development, test, and

production to be maintained in the same location and

distributed across all servers.

◦ Distributed service registry

▪ Keeps registered services synchronized across all

servers.

◦ Distributed ticket registry

▪ Distributes tickets across all back-end servers so that

any server can service a client, even when servers go

down or restart.

• Support for additional protocols

◦ Built-in support for SAML 2.0 IdP and SP

▪ No more Shibboleth servers!

▪ Support for many SPs built in: Adobe Creative Cloud,

Google Apps, Office 365, Tableau, Workday, …

◦ Built-in support for multi-factor authentication

▪ Duo Security (forthcoming for faculty and staff)

▪ Google Authenticator (perhaps, for students)

• New management console and management webapps

◦ Management console

▪ Dashboard for monitoring server status and performance

▪ Active sessions and authentications

▪ Metrics and statistics

◦ Services management

▪ Add, edit, delete, enable, disable services

Introduction PDF last generated: October 18, 2018

Deploying Apereo CAS Page 7

▪ Attribute release, access rules, etc.

• Other interesting features (for experimentation)

◦ Risk-based authentications

◦ Password management

Although the Apereo development team has dramatically simplified the configure-

build-deploy process, CAS 5 is still a complex system with a lot of moving parts,

and there can be a pretty steep learning curve for someone who’s never done it

before. Since there’s not a lot of up-to-date step-by-step how-to documentation out

there, we’re offering what we’ve learned in the hope that others will find it helpful.

DISCLAIMER

The instructions and settings provided in this document may not be the only

way to do things. They may not be the best way to do things. They may not

even be the right way to do things. They work for us, but they may not work

for you. You should carefully evaluate every suggestion, recommendation,

and instruction in the context of your environment and decide whether or

not it makes sense. Make sure you know and understand what’s going to

happen before you press the “Enter” key. When in doubt, Read The Fine

Manual .

No warranty express or implied. May cause drowsiness. Your mileage may

vary. Not intended to diagnose, treat, cure, or prevent any disease.

Professional driver on closed course. Safety goggles recommended. Use

with adult supervision. Keep out of reach of children. Do not eat.

Introduction PDF last generated: October 18, 2018

Deploying Apereo CAS Page 8

https://apereo.github.io/cas/5.2.x/index.html
https://apereo.github.io/cas/5.2.x/index.html

SSO environment architecture
The New School’s dependence on its single sign-on environment continues to

grow, making the availability of the environment ever more important. The CAS 5

server environment will be designed for high availability by ensuring that each

component of the environment is sufficiently redundant to make the service

resilient to multiple component failures and to enable routine maintenance on the

environment to be performed without incurring service downtime. Figure 1 below

highlights the principal aspects of this design.

Figure 1. The New School CAS 5 development environment

Starting with the red circle near the top of the figure, the user- (or client-) facing

domain name for the single sign-on service will resolve to a virtual address on the

F5 load balancers. In the development environment, this domain name will be

casdev.newschool.edu. The F5s are deployed in a high availability configuration

between our two primary data centers, and fail over automatically in the event the

primary unit goes down.

SSO environment architecture PDF last generated: October 18, 2018

Deploying Apereo CAS Page 9

Multiple CAS servers will be deployed in an active-active configuration. A

distributed ticket registry (cache) that replicates all tickets to all servers will be used

to ensure that a ticket can be located from any server (the server that is asked to

validate a ticket may not be the same server that originally created it). A distributed

service registry that replicates all registered services to all servers will be used to

ensure that all servers support the same set of services. And finally, a configuration

server will be used to ensure that server configuration settings are kept in sync

across all the servers. To eliminate the need to replicate Java servlet container

sessions across servers (a complex and unreliable process), session affinity will be

enabled on the F5s. This option tells the F5s to remember which server a new

client is first directed to, and direct all requests from that client to that server for a

short period of time.

The production environment will require a minimum of four CAS servers, two in

each primary data center, to ensure that redundancy is maintained even if one data

center goes offline. However, as shown in the figure, the development environment

(as well as the test environment) can get by with just three servers (casdev-srv01,

casdev-srv02, and casdev-srv03.newschool.edu), which conserves VMware

resources while still enabling us to validate replication operations in the more

complex “N > 2” case.

Two user directories are used to provide authentication services: Active Directory

and Luminis LDAP. The Active Directory environment is already configured for high

availability, with two domain controllers in each data center (and a fifth one in Paris)

fronted by a virtual address (zuul.newschool.edu) on the F5s. The Luminis LDAP

environment is not currently configured for high availability; there is only a single

server instance. However, the instance is located behind a virtual address

(janus.newschool.edu) on the F5s, and the underlying technology (OpenDJ)

supports replication, so enabling high availability should be relatively straight

forward (doing so is outside the scope of this document, however).

To facilitate development and testing, the development environment will also

include two single sign-on enabled applications. Shown at the top left of Figure 1

as blue boxes, casdev-casapp.newschool.edu will be a CAS-enabled Apache

web server, and casdev-samlsp.newschool.edu will be a SAML2-enabled

Apache web server.

References

• CAS 5: High Availability Guide (HA/Clustering)

SSO environment architecture PDF last generated: October 18, 2018

Deploying Apereo CAS Page 10

https://apereo.github.io/cas/5.2.x/planning/High-Availability-Guide.html

Leveraging the cloud (future)

 Note: The environment described below represents future work that is

outside the scope of this document. We describe it here to record our thinking

on the topic, but we have no plans to implement a hybrid environment at the

present time.

The on-premises single sign-on environment described in the previous section,

even though designed for high availability, may still be vulnerable to large-scale

adverse events such as natural disasters (Hurricane Sandy, 2012), public

infrastructure failures (Northeast power outage, 2003), or Tier-1 Internet provider

outages (Level3 Communications, 2013). If such an event were to occur and “take

out” both New School data centers or both New School Internet connections, the

impact would be felt across more than just the other New School applications

hosted in our on-premises data centers. Cloud-hosted applications, such as

Google G Suite, Workday, and Canvas would also become unavailable, because

they depend on the New School single sign-on service to enable users to log in.

Figure 2 shows how Amazon Web Services (AWS) could be used to add a cloud-

based component to the on-premises deployment described in the previous

section. In this hybrid design, on-campus users would continue to use the on-

premises server environment to authenticate, providing better performance, while

off-campus users would use the cloud-based environment.

Leveraging the cloud (future) PDF last generated: October 18, 2018

Deploying Apereo CAS Page 11

Figure 2. Hybrid on-premises/cloud CAS 5 environment

To keep on-campus users authenticating against the on-premises server

environment while directing off-campus users to the hybrid environment, the New

School domain name servers would be configured such that the internal servers

(used by on-campus devices) and external servers (used by off-campus devices)

return different results when resolving the user- (or client-) facing domain name for

the single sign-on service. The internal name servers would continue to resolve the

domain name to a virtual address on the F5 load balancers, resulting in on-campus

users being directed to the on-premises environment as described previously. The

external name servers, however, would resolve the domain name to a virtual

address on an AWS Elastic Load Balancer.

The user-facing Elastic Load Balancer (at the top of the diagram) could be a single

instance or, to ensure high availability, multiple instances (perhaps even across

multiple availability zones). As shown in the diagram, the load balancer would route

connections to a mixed pool of on-premises and cloud-based CAS servers.

Utilizing the on-premises servers reduces the number of cloud-based servers

needed, although there must still be enough cloud-based servers to ensure

availability and response time when the on-premises environment is unavailable.

The cloud-based CAS servers would be configured to be members of the same

ticket storage and service registry replication pools as the on-premises servers, to

ensure a seamless user experience regardless of which servers are accessed.

Leveraging the cloud (future) PDF last generated: October 18, 2018

Deploying Apereo CAS Page 12

The cloud-based environment would also contain cloud-based instances of Active

Directory and Luminis LDAP. Additional Elastic Load Balancers would be used to

route directory queries to mixed pools of on-premises and cloud-based directory

servers. As above, utilizing the on-premises servers reduces the number of cloud-

based servers (and the amount of storage) needed, although there must still be

enough cloud-based servers of each type to ensure availability and response time

when the on-premises environment is unavailable. The cloud-based servers would

be configured to replicate with their on-premises counterparts, ensuring a seamless

user experience regardless of which servers are accessed.

The addition of a cloud-based component to the on-premises deployment

described in the previous section will ensure that the New School single sign-on

service is resilient even in the face of large-scale adverse events that “take out” the

on-premises environment. The degree of resilience provided by the cloud

environment can be increased or decreased through the deployment of additional

server instances, the use of multiple availability zones, or even the use of multiple

cloud providers.

Leveraging the cloud (future) PDF last generated: October 18, 2018

Deploying Apereo CAS Page 13

Setting up the environment

Summary: Before beginning the CAS build and configuration process,

the server environment should be prepared by creating virtual

machines, installing necessary software dependencies, and

performing basic software configuration and system administration

tasks.

The New School’s CAS 5 development environment is comprised of six servers, all

in the newschool.edu domain. There is one master build server:

casdev-master

192.168.100.100

The master build server where software will be built for de-

ployment to the other servers. This server will include de-

velopment tools (compilers, libraries, etc.) that are not ap-

propriate for installation on user-facing servers.

There is also a pool of three identical CAS servers:

casdev-srv01

192.168.100.101

A CAS server instance; a member of the F5 load balancers’

server pool for the casdev.newschool.edu virtual address.

casdev-srv02

192.168.100.102

A CAS server instance; a member of the F5 load balancers’

server pool for the casdev.newschool.edu virtual address.

casdev-srv03

192.168.100.103

A CAS server instance; a member of the F5 load balancers’

server pool for the casdev.newschool.edu virtual address.

And there are two sample client application servers:

casdev-casapp

192.168.100.201

A user-facing client application (Apache web server) used

to test the CAS protocol and attribute release.

casdev-samlsp

192.168.100.202

A user-facing client application (Apache web server) used

to test the SAML 2.0 protocol and attribute release.

The environment also includes a single virtual address on the F5 load balancers

(also in the newschool.edu domain):

casdev

192.168.200.10

User-facing domain name and virtual address that man-

ages access to the pool of CAS servers (casdev-srvNN) to

provide load balancing, high availability, and fault tolerance.

Setting up the environment PDF last generated: October 18, 2018

Deploying Apereo CAS Page 14

Each of the six development servers is a VMware virtual machine running Red Hat

Enterprise Linux (RHEL) 7 (64-bit) on 1 CPU with 4 GB of RAM and 20 GB of disk

space.

 Important: Although 1 CPU and 4 GB is adequate for CAS development

and testing, production operation requires more resources. Each server in the

production server pool should have a minimum of 2 CPUs and 8 GB of

memory.

References

• CAS 5: Installation Requirements

Setting up the environment PDF last generated: October 18, 2018

Deploying Apereo CAS Page 15

https://apereo.github.io/cas/5.2.x/planning/Installation-Requirements.html

Initial setup tasks
Before starting the process of configuring the various servers to perform their

individual roles in the development environment, there are some initial setup tasks

to be performed.

Ensure that all systems are up-to-date

It’s important to make sure that the operating system software on the servers is up-

to-date. Run the command

yum -y update

on each of the six servers in the environment to ensure that all software installed

on the base system is up-to-date. If running this command results in updates to

system shared libraries or the operating system kernel, reboot the server(s) before

continuing.

Install development tools on the master build server

The master build server (casdev-master) will be used to build and compile

software from source code. Run the command

casdev-master# yum -y groupinstall "Development Tools"

to install the tools needed to do that. This command should only be run on the

master build server (casdev-master); it is not necessary (or desirable) to install

these tools on any of the other servers.

Install Perl test modules on the master build server

Some of the software packages to be installed use Perl testing modules to perform

their tests. Run the commands

casdev-master# yum -y install perl-Module-Load-Conditional

casdev-master# yum -y install perl-Test-Simple

Initial setup tasks PDF last generated: October 18, 2018

Deploying Apereo CAS Page 16

to install the necessary modules. This command should only be run on the master

build server (casdev-master); it is not necessary to install these modules on any of

the other servers.

Configure Git (optional)

The CAS project team uses GitHub to host all of its code, maintain version control,

and allow collaboration among developers. Once we start Building the CAS server

(page 86), we’ll be using Git commands to make local copies of files from the CAS

GitHub repositories, to track our changes and additions to those files as we

customize them, and to keep our local files in sync with any corrections and

updates made to the master copies by the project team.

 Tip: If you’re unfamiliar with Git and GitHub, you may want to read Pro Git

(chapters 2, 3, and 6).

When making a Git commit (recording a change to a file as a new version), Git

requires that the user name and email address of the person making the commit be

provided so they can be recorded in the commit history. To avoid having to specify

these values every time, they can be configured ahead of time by running the

commands

casdev-master# git config --global user.name "David A. Curry"

casdev-master# git config --global user.email "david.curry@newschoo

l.edu"

on the master build server (casdev-master). (Substitute your name and email

address for the values inside the quotation marks.) When making a commit, Git will

also ask for some text to describe what was changed, and will invoke a text editor

to allow that text to be entered. Run the command

casdev-master# git config --global core.editor "vim"

to configure the editor that will be used for this purpose (the example above sets

the editor to vim ; another common choice is emacs).

Initial setup tasks PDF last generated: October 18, 2018

Deploying Apereo CAS Page 17

https://git-scm.com/book/

Set up SSH public key authentication (optional)

To make it easier to distribute the software built on casdev-master to the other

servers in the environment, we will create a public/private authentication key pair

that will allow casdev-master to connect to those servers via ssh and scp

without a password. Run the command

casdev-master# ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):

Created directory '/root/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

The key fingerprint is:

89:e0:9e:11:78:64:64:22:d3:df:74:30:38:e3:ec:c6 root@casdev-master.ne

wschool.edu

The key's randomart image is:

+--[RSA 2048]----+

|o...=.o. |

| o.*+ ... |

| .++= . |

| o+o.. . |

| oo . S |

| .Eo |

| .o |

| |

| |

+-----------------+

casdev-master#

on the master build server (casdev-master) to generate the key pair. Once the key

pair has been generated, run the command

Initial setup tasks PDF last generated: October 18, 2018

Deploying Apereo CAS Page 18

casdev-master# ssh-copy-id casdev-srv01.newschool.edu

The authenticity of host 'casdev-srv01.newschool.edu (192.168.20.1)'

can't be established.

ECDSA key fingerprint is 43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:7

3:a8.

Are you sure you want to continue connecting (yes/no)? yes

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new ke

y(s), to filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if yo

u are prompted now it is to install the new keys

root@casdev-srv01.newschool.edu's password: (enter remote server pass

word)

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'casdev-srv01.newschoo

l.edu'"

and check to make sure that only the key(s) you wanted were added.

casdev-master#

to copy it to casdev-srv01. Repeat the ssh-copy-id step to copy the key to each

of the other servers in the environment (casdev-srv02, casdev-srv03, casdev-

casapp, and casdev-samlsp).

Initial setup tasks PDF last generated: October 18, 2018

Deploying Apereo CAS Page 19

Configure time synchronization
For an active-active, multiple-server environment such as the one we’re building to

work properly, the time-of-day clocks on all servers in the environment must be in

agreement. The Network Time Protocol (NTP) is used to ensure that each server is

synchronized to Coordinated Universal Time (UTC).

 Note: The steps in this section should be performed on all six servers in

the environment.

Determine if NTP is already in use

RHEL 7 offers two NTP implementations, ntpd and chronyd . Run the commands

systemctl status chronyd

systemctl status ntpd

to determine whether either of these is already in use. If output similar to this:

● chronyd.service - NTP client/server

Loaded: loaded (/usr/lib/systemd/system/chronyd.service; enabled)

Active: active (running) since Ddd YYYY-MM-DD HH:MM:SS EDT; 58s a

go

Main PID: 2530 (chronyd)

CGroup: /system.slice/chronyd.service

└─2530 /usr/sbin/chronyd -u chrony

or this:

● ntpd.service - Network Time Service

Loaded: loaded (/usr/lib/systemd/system/ntpd.service; enabled; ven

dor preset: disabled)

Active: active (running) since Ddd YYYY-MM-DD HH:MM:SS EDT; 58s ag

o

Process: 25086 ExecStart=/usr/sbin/ntpd -u ntp:ntp $OPTIONS (code=e

xited, status=0/SUCCESS)

Main PID: 25087 (ntpd)

CGroup: /system.slice/ntpd.service

└─25087 /usr/sbin/ntpd -u ntp:ntp -g

Configure time synchronization PDF last generated: October 18, 2018

Deploying Apereo CAS Page 20

appears, then one service or the other is installed and running, and nothing further

needs to be done (go to the next section, Install Apache Tomcat on the CAS

servers (page 25)). On the other hand, if output similar to this:

● ntpd.service - Network Time Service

Loaded: loaded (/usr/lib/systemd/system/ntpd.service; disabled; ve

ndor preset: disabled)

Active: inactive (dead)

or this:

Unit chronyd.service could not be found.

appears for both commands, then time is not being synchronized and NTP needs

to be installed on each server in the development environment by following the

remaining steps in this section.

Install NTP (ntpd)

Generally, ntpd is preferred for always-on systems like servers, while chronyd is

intended for use on systems like laptops that are shut down frequently or

connected only intermittently to a network. Run the command

yum -y install ntp

to install ntpd .

Configure /etc/ntp.conf

Edit the file /etc/ntp.conf and replace its entire contents with the ntpd

configuration used by your organization. If your organization doesn’t have a

standard configuration, use something like the following example, which makes use

of public time servers from the NTP Pool Project:

Configure time synchronization PDF last generated: October 18, 2018

Deploying Apereo CAS Page 21

#

Network Time Protocol configuration file (/etc/ntp.conf)

#

Use this configuration file on Stratum 3 Linux systems.

#

#

Stratum 2 servers. The total number of servers listed should be at

least 2 more

than the number specified for minclock and minsane, below.

#

server 0.us.pool.ntp.org iburst

server 1.us.pool.ntp.org iburst

server 2.us.pool.ntp.org iburst

server 3.us.pool.ntp.org iburst

server 0.north-america.pool.ntp.org iburst

server 1.north-america.pool.ntp.org iburst

server 2.north-america.pool.ntp.org iburst

server 3.north-america.pool.ntp.org iburst

#

At least minsane candidate servers must be available for selectio

n, and the

mitigation algorithm must produce at least minclock candidates. Byz

antine

agreement principles require at least 4 candidates to correctly dis

card a

single falseticker.

#

http://support.ntp.org/bin/view/Support/StartingNTP4#Sectio

n_7.1.4.3.1.

#

tos minsane 4

tos minclock 4

#

File used to record the frequency of the local clock oscillator. Th

is is

used at startup to set the initial frequency.

#

driftfile /var/lib/ntp/drift

If you’re not in the United States or North America, consult the NTP Pool Project’s

pool server lists for a list of servers in your country or on your continent.

Configure time synchronization PDF last generated: October 18, 2018

Deploying Apereo CAS Page 22

http://www.pool.ntp.org/zone/@

Open the NTP port in the firewall

In order to synchronize time with other systems, ntpd needs to be able to

communicate on UDP port 123. RHEL 7’s firewalld includes a pre-defined

service for ntp to enable this. Run the commands

firewall-cmd --zone=public --add-service=ntp --permanent

success

firewall-cmd --reload

success

#

to open that service in the system firewall.

Enable and start ntpd

Run the commands

systemctl enable ntpd

Created symlink from /etc/systemd/system/multi-user.target.wants/ntp

d.service to /usr/lib/systemd/system/ntpd.service.

systemctl start ntpd

to enable and start ntpd . After about 15-20 minutes, the protocol should have

selected a server to synchronize with, and its status can be checked with the

ntpstat and/or ntpq commands:

Configure time synchronization PDF last generated: October 18, 2018

Deploying Apereo CAS Page 23

ntpstat

synchronised to NTP server (208.75.89.4) at stratum 3

time correct to within 72 ms

polling server every 1024 s

ntpq -p localhost

remote refid st t when poll reach delay offse

t jitter

===

=========

+ns20.alltraders 127.67.113.92 2 u 713 1024 377 82.958 -2.84

9 1.783

-four10.gac.edu 18.26.4.105 2 u 403 1024 377 35.805 -0.44

4 2.610

-barry.tsi.io 198.60.22.240 2 u 352 1024 377 88.362 -0.08

8 2.111

-mdnworldwide.co 127.67.113.92 2 u 412 1024 371 52.765 2.50

9 4.455

-static-96-244-9 192.168.10.254 2 u 268 1024 377 10.932 1.25

5 3.564

+srcf-ntp.stanfo 171.64.7.105 2 u 219 1024 377 82.896 -3.09

2 1.710

*time.tritn.com 198.60.22.240 2 u 530 1024 377 68.547 -1.66

0 3.617

+bindcat.fhsu.ed 132.163.4.103 2 u 916 1024 377 58.940 -2.84

1 2.145

#

Configure time synchronization PDF last generated: October 18, 2018

Deploying Apereo CAS Page 24

Install Apache Tomcat on the CAS
servers

Summary: Apache Tomcat will be used as the Java Servlet container

for CAS. To ensure a best practices security configuration, the latest

versions of Java, Tomcat, OpenSSL, and the Tomcat Native Library

will be installed on the master build server and then distributed to the

CAS servers.

 Note: CAS 5 is based on Spring Boot, which means that instead of building

and installing an external servlet container, CAS can be deployed using an

embedded servlet container and invoked with a java -jar cas.war style

command. However, because we will be deploying multiple Java applications

on the same set of servers, we will use the more traditional external container

approach. This will avoid network port conflicts, allow us to make more

efficient use of system resources, and enable us to manage our CAS

installation in the same way we manage our other Java servlet-based

applications.

CAS 5 requires Java 8 and a Java Servlet container that supports v3.1 or later of

the Java Servlet specification. Apache Tomcat is the most commonly used

container for CAS, so that’s what we’ll use for this deployment. Tomcat 8.0 was the

first version to support v3.1 of the servlet specification, but this version has been

superseded by Tomcat 8.5. Unfortunately, Red Hat does not, as of this writing, offer

Tomcat 8.5 on RHEL 7, so it will have to be installed manually.

The CAS Security Guide warns that all communication with the CAS server must

occur over a secure channel (i.e., Transport Layer Security) to prevent the

disclosure of users’ security credentials and/or CAS ticket-granting tickets. From a

practical standpoint this means that all CAS URLs must use HTTPS, but it also

means that all connections from the CAS server to the calling application must use

HTTPS as well. Consequently, it’s critical that Tomcat’s TLS settings be configured

in line with recognized best practices for cipher suite choice, key lengths, forward

secrecy, and other parameters.

In the past, it has been difficult to configure Tomcat according to TLS best practices

because of limitations in both Tomcat and the Java Secure Socket Extension

(JSSE). Java 8 and Tomcat 8.5 have made significant improvements in this area,

but installation of the optional Tomcat Native Library, which uses OpenSSL instead

of Java cryptography libraries, is still the best way to ensure that a Tomcat

installation scores an ‘A’ on the Qualys® SSL Labs SSL Server Test. The version of

Install Apache Tomcat on the CAS servers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 25

the Tomcat Native Library included with Tomcat 8.5 requires OpenSSL 1.0.2 or

higher. Unfortunately, Red Hat does not, as of this writing, offer OpenSSL 1.0.2 or

higher on RHEL 7, so it will also have to be installed manually.

References

• CAS 5: Security Guide

• CAS 5: Servlet Container Configuration

• Tomcat Wiki: TLS Cipher suite choice

Install Apache Tomcat on the CAS servers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 26

https://apereo.github.io/cas/5.2.x/planning/Security-Guide.html
https://apereo.github.io/cas/5.2.x/installation/Configuring-Servlet-Container.html
https://wiki.apache.org/tomcat/Security/Ciphers

Install an entropy daemon

 Note: This step is recommended if running CAS on virtual Linux servers. It

is not necessary if running CAS on physical Linux servers or Windows servers

of either type.

A common problem on virtual Linux servers is that the /dev/random device will run

low on entropy, because most of the sources the kernel uses to build up the

entropy pool are hardware-based, and therefore do not exist in a virtual

environment. If there’s not enough entropy available when Tomcat is started, it can

often take two or three minutes or longer for the server to start. Once Tomcat has

started and the CAS application has been loaded, entropy is still required to

establish secure (HTTPS) connections with authenticating users’ browsers and

protected applications. A lack of available entropy will adversely affect the

performance of the application by limiting the rate at which connections can be

processed.

To improve the size of the entropy pool on Linux, it’s possible to feed random data

from an external source into /dev/random . One way to do this is the haveged

daemon, which uses the HAVEGE (HArdware Volatile Entropy Gathering and

Expansion) algorithm to harvest the indirect effects of hardware events on hidden

processor state (caches, branch predictors, memory translation tables, etc) to

generate random bytes with which to fill /dev/random whenever the supply of

random bits falls below the low water mark of the device. We will use this approach

to avoid entropy depletion on the CAS servers.

Red Hat does not offer haveged on RHEL 7, but it can be installed from the

Fedora Project’s Extra Packages for Enterprise Linux (EPEL) repository.

Install the EPEL repository

Run the commands

Install an entropy daemon PDF last generated: October 18, 2018

Deploying Apereo CAS Page 27

https://fedoraproject.org/wiki/EPEL

cd /tmp

curl -LO https://dl.fedoraproject.org/pub/epel/epel-release-lates

t-7.noarch.rpm

% Total % Received % Xferd Average Speed Time Time Tim

e Current

Dload Upload Total Spent Lef

t Speed

100 14848 100 14848 0 0 27561 0 --:--:-- --:--:--

--:--:-- 27547

yum -y install epel-release-latest-7.noarch.rpm

rm -f epel-release-latest-7.noarch.rpm

on the master build server (casdev-master) and the CAS servers (casdev-srv01,

casdev-srv02, and casdev-srv03) to install the EPEL repository. It is not

necessary to install the EPEL repository on the client application servers (casdev-

casapp and casdev-samlsp).

Install haveged

Run the commands

yum -y install haveged

systemctl enable haveged

Created symlink from /etc/systemd/system/multi-user.target.wants/have

ged.service to /usr/lib/systemd/system/haveged.service.

systemctl start haveged

on the master build server (casdev-master) and the CAS servers (casdev-srv01,

casdev-srv02, and casdev-srv03) to install, enable, and start haveged . It is not

necessary to install haveged on the client application servers (casdev-casapp and

casdev-samlsp).

References

• haveged—a simple entropy daemon

• HAVEGE project

Install an entropy daemon PDF last generated: October 18, 2018

Deploying Apereo CAS Page 28

http://www.issihosts.com/haveged/
https://www.irisa.fr/caps/projects/hipsor/index.php

Install Java
CAS 5 requires Java 8 or higher. You can use either the OpenJDK or the Oracle

version of the Java Development Kit (JDK), but if you opt for the Oracle version,

you will also have to install the Java Cryptography Extension (JCE) Unlimited

Strength Jurisdiction Policy Files to enable the use of stronger cryptographic

algorithms and longer keys. Other than that, there is little practical difference

between the two from CAS’ perspective.

Since OpenJDK doesn’t require us to download and maintain yet another package,

we’ll use that version for this deployment. Run the command

yum -y install java-1.8.0-openjdk-devel

on the master build server (casdev-master) and the CAS servers (casdev-srv01,

casdev-srv02, and casdev-srv03) to install OpenJDK Java 8. It is not necessary

(or desirable) to install Java on the client application servers (casdev-casapp and

casdev-samlsp).

Because it’s possible to have more than one version of Java installed at the same

time, run the command

java -version

openjdk version "1.8.0_141"

OpenJDK Runtime Environment (build 1.8.0_141-b16)

OpenJDK 64-Bit Server VM (build 25.141-b16, mixed mode)

#

to check that Java 8 is indeed the default version (the version number should start

with “1.8”; the remainder will vary depending on what the current patch level is).

Install Java PDF last generated: October 18, 2018

Deploying Apereo CAS Page 29

Install Tomcat

 Note: The steps in this and the next several sections should only be

performed on the build server (casdev-master). After everything has been

built, configured, and tested, the installation will be copied to the CAS servers

(casdev-srv01, casdev-srv02, and casdev-srv03).

As discussed in the introduction to this section (page 25), Red Hat does not offer

Tomcat 8.5 on RHEL 7, so it must be downloaded and installed manually. Run the

commands

casdev-master# mkdir -p /opt/tomcat

casdev-master# cd /opt/tomcat

casdev-master# curl -LO 'http://apache.cs.utah.edu/tomcat/tomcat-8/v

8.5.27/bin/apache-tomcat-8.5.27.tar.gz'

% Total % Received % Xferd Average Speed Time Time Tim

e Current

Dload Upload Total Spent Lef

t Speed

100 9313k 100 9313k 0 0 4036k 0 0:00:02 0:00:02

--:--:-- 4038k

casdev-master# tar xzf apache-tomcat-8.5.27.tar.gz

casdev-master# ln -s apache-tomcat-8.5.27 latest

casdev-master# rm -f apache-tomcat-8.5.27.tar.gz

to download and install Tomcat on the master build server (casdev-master).

(Replace 8.5.27 in the commands above with the current stable version of

Tomcat 8.5.) This will install the current version of Tomcat 8.5 in a version-specific

subdirectory of /opt/tomcat , and make it accessible by the path /opt/tomcat/

latest . By making everything outside this directory refer to /opt/tomcat/latest ,

an updated version can be installed and the link changed without having to edit/

recompile anything else.

Install Tomcat PDF last generated: October 18, 2018

Deploying Apereo CAS Page 30

Install Tomcat dependencies
As discussed in the introduction to this section (page 25), the Tomcat Native

Library is the best way to ensure that Tomcat meets TLS best practices. The library

is included with Tomcat 8.5, but must be compiled and installed manually. To do

that, the current versions of OpenSSL and the Apache Portable Runtime, which are

not offered by Red Hat for RHEL 7, must also be downloaded, compiled, and

installed. Lastly, we will also compile and install the Apache Commons Daemon to

help with installing and running Tomcat as a system service.

All of the steps in this section should be performed on the master build server

(casdev-master); the results will be copied to the CAS servers (casdev-srv01,

casdev-srv02, and casdev-srv03) later.

OpenSSL

The version of the Tomcat Native Library included with Tomcat 8.5 requires

OpenSSL 1.0.2 or higher, which is not offered by Red Hat on RHEL7. Run the

commands

casdev-master# cd /tmp

casdev-master# curl -LO 'https://www.openssl.org/source/openssl-1.1.0

g.tar.gz'

% Total % Received % Xferd Average Speed Time Time Tim

e Current

Dload Upload Total Spent Lef

t Speed

100 5278k 100 5278k 0 0 33.4M 0 --:--:-- --:--:--

--:--:-- 33.4M

casdev-master# tar xzf openssl-1.1.0g.tar.gz

casdev-master# cd openssl-1.1.0g

casdev-master# mkdir -p /opt/openssl/openssl-1.1.0g

casdev-master# ln -s openssl-1.1.0g /opt/openssl/latest

casdev-master# ./config --prefix=/opt/openssl/openssl-1.1.0g shared

(lots of output... check for errors)

casdev-master# make depend

casdev-master# make

(lots of output... check for errors)

casdev-master# make test

(lots of output... check for errors)

casdev-master# make install_sw

(lots of output... check for errors)

casdev-master# cd /tmp

casdev-master# rm -rf openssl-1.1.0g openssl-1.1.0g.tar.gz

Install Tomcat dependencies PDF last generated: October 18, 2018

Deploying Apereo CAS Page 31

to download and build OpenSSL on the master build server (casdev-master).

(Replace 1.1.0g in the commands above with the current stable version of

OpenSSL.)

 Important: The INSTALL document in the OpenSSL source directory says

that tests must be run as an unprivileged user. If you decide to ignore this

and run them as root anyway, you should expect the 40-test_rehash.t test to

fail.

This will install the current version of OpenSSL in a version-specific subdirectory of

/opt/openssl , and make it accessible by the path /opt/openssl/latest . By

linking the Tomcat Native Library against /opt/openssl/latest , an updated

version of OpenSSL can be installed and the link changed without having to

recompile anything else.

Apache Portable Runtime

The Tomcat Native Library also depends on the Apache Portable Runtime (APR)

library. Although the version of the APR library provided by Red Hat with RHEL7 is

compatible with the Tomcat Native Library included with Tomcat 8.5, it’s several

versions behind the current release. Since we’re building other dependencies

anyway, we’ll build this one too, just for completeness. Run the commands

Install Tomcat dependencies PDF last generated: October 18, 2018

Deploying Apereo CAS Page 32

casdev-master# cd /tmp

casdev-master# curl -LO 'http://apache.cs.utah.edu//apr/apr-1.6.3.ta

r.gz'

% Total % Received % Xferd Average Speed Time Time Tim

e Current

Dload Upload Total Spent Lef

t Speed

100 1045k 100 1045k 0 0 439k 0 0:00:02 0:00:02

--:--:-- 439k

casdev-master# tar xzf apr-1.6.3.tar.gz

casdev-master# cd apr-1.6.3

casdev-master# mkdir -p /opt/apr/apr-1.6.3

casdev-master# ln -s apr-1.6.3 /opt/apr/latest

casdev-master# ./configure --prefix=/opt/apr/apr-1.6.3

casdev-master# make

(lots of output... check for errors)

casdev-master# make test

(lots of output... check for errors)

casdev-master# make install

(lots of output... check for errors)

casdev-master# cd /tmp

casdev-master# rm -rf apr-1.6.3 apr-1.6.3.tar.gz

to download and build the APR library on the master build server (casdev-master).

(Replace 1.6.3 in the commands above with the current stable version of the

APR library.)

This will install the current version of the APR library in a version-specific

subdirectory of /opt/apr , and make it accessible by the path /opt/apr/latest .

By linking the Tomcat Native Library against /opt/apr/latest , an updated version

of the APR library can be installed and the link changed without having to

recompile anything else.

Tomcat Native Library

The Tomcat Native Library source code is included as part of the Tomcat

distribution; it just needs to be extracted, compiled, and installed. Run the

commands

Install Tomcat dependencies PDF last generated: October 18, 2018

Deploying Apereo CAS Page 33

casdev-master# cd /opt/tomcat/apache-tomcat-8.5.27/bin

casdev-master# tar xzf tomcat-native.tar.gz

casdev-master# cd tomcat-native-*-src/native

casdev-master# ./configure \

--with-java-home=/usr/lib/jvm/java-openjdk \

--with-apr=/opt/apr/latest/bin/apr-1-config \

--with-ssl=/opt/openssl/latest \

--prefix=/opt/tomcat/apache-tomcat-8.5.27

(lots of output... check for errors)

casdev-master# make

(lots of output... check for errors)

casdev-master# make install

(lots of output... check for errors)

casdev-master# cd ../..

casdev-master# rm -rf tomcat-native-*-src

to build the Tomcat Native Library on the master build server (casdev-master).

(Replace 8.5.27 in the commands above with the version of Tomcat installed

earlier.)

This will install the Tomcat Native Library in the lib directory of its associated

Tomcat installation.

Apache Commons Daemon (jsvc)

The Apache Commons Daemon (jsvc) allows Tomcat to be started as root to

perform some privileged operations (such as binding to ports below 1024) and then

switch identity to run as a non-privileged user, which is better from a security

perspective. The daemon is included as part of the Tomcat distribution; it just

needs to be extracted, compiled, and installed. Run the commands

casdev-master# cd /opt/tomcat/apache-tomcat-8.5.27/bin

casdev-master# tar xzf commons-daemon-native.tar.gz

casdev-master# cd commons-daemon-*-native-src/unix

casdev-master# ./configure --with-java=/usr/lib/jvm/java-openjdk

(lots of output... check for errors)

casdev-master# make

(lots of output... check for errors)

casdev-master# mv jsvc ../..

casdev-master# cd ../..

casdev-master# rm -rf commons-daemon-*-native-src

Install Tomcat dependencies PDF last generated: October 18, 2018

Deploying Apereo CAS Page 34

to build the Tomcat Native Library on the master build server (casdev-master).

(Replace 8.5.27 in the commands above with the version of Tomcat installed

earlier.)

This will install the jsvc program in the bin directory of its associated Tomcat

installation.

Install Tomcat dependencies PDF last generated: October 18, 2018

Deploying Apereo CAS Page 35

Organize the installation
To make it easier to upgrade Tomcat from one version to another without having to

reapply configuration files changes or reinstall web applications, it makes sense to

move these parts of the Tomcat installation to different parts of the file system and

install symbolic links in their place.

All of the commands in this section should be run on the master build server

(casdev-master); the results will be copied to the CAS servers (casdev-srv01,

casdev-srv02, and casdev-srv03) later.

Move the conf directory to /etc/tomcat

The conf subdirectory contains Tomcat’s configuration files. Although these files

can change from one major version to another, they don’t typically have to change

when installing newer minor versions. Run the commands

casdev-master# cd /opt/tomcat/latest

casdev-master# cp -rp conf /etc/tomcat

casdev-master# rm -rf conf

casdev-master# ln -s /etc/tomcat conf

to move Tomcat’s configuration files to /etc/tomcat .

Move the logs directory to /var/log/tomcat

Log files can grow very large; storing them in /opt is not a good practice. Since

log files are typically stored in /var/log on Linux systems, it makes sense to store

Tomcat’s log files there as well. Run the commands

casdev-master# cd /opt/tomcat/latest

casdev-master# cp -rp logs /var/log/tomcat

casdev-master# rm -rf logs

casdev-master# ln -s /var/log/tomcat logs

to move Tomcat’s log files to /var/log/tomcat .

Organize the installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 36

Move the webapps directory to /var/lib/tomcat

Although Tomcat runs web applications, the web applications themselves are not

part of Tomcat. Therefore, it doesn’t make a lot of sense to keep them inside the

Tomcat installation directory, where they will have to be reinstalled every time

Tomcat is updated. Run the commands

casdev-master# cd /opt/tomcat/latest

casdev-master# cp -rp webapps /var/lib/tomcat

casdev-master# rm -rf webapps

casdev-master# ln -s /var/lib/tomcat webapps

to move the webapps directory to /var/lib/tomcat .

Move the work directory to /var/cache/tomcat/work

Tomcat’s work directory is where translated servlet source files and JSP/JSF

classes are stored. Its contents are created automatically, but don’t need to be

recreated unless the application has been changed. To reduce startup time, the

contents of this directory should be preserved across application restarts and

system reboots. Linux systems provide the /var/cache directory for just that

purpose, so we can put the work directory there. Run the commands

casdev-master# cd /opt/tomcat/latest

casdev-master# mkdir /var/cache/tomcat

casdev-master# cp -rp work /var/cache/tomcat/work

casdev-master# rm -rf work

casdev-master# ln -s /var/cache/tomcat/work work

to move the work directory to /var/cache/tomcat/work . Note that we created a

work subdirectory in /var/cache/tomcat ; this is so that we can also use /var/

cache/tomcat to store Tomcat’s temp directory (see below).

Organize the installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 37

Move the temp directory to /var/cache/tomcat/temp

Tomcat provides a temp directory for web applications to store temporary files in.

But like log files, temporary files can sometimes be very large, so storing them in

/opt is probably not a good practice. But /tmp and /var/tmp are not the best

places either, because we want to be able to limit access to Tomcat’s temporary

files (see Harden the installation (page 39)). Therefore, we will create a new temp

directory under /var/cache/tomcat . Run the commands

casdev-master# cd /opt/tomcat/latest

casdev-master# cp -rp temp /var/cache/tomcat/temp

casdev-master# rm -rf temp

casdev-master# ln -s /var/cache/tomcat/temp temp

to move Tomcat’s temp directory to /var/cache/tomcat/temp .

Organize the installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 38

Harden the installation
The Tomcat Security Considerations document makes several recommendations

for hardening a Tomcat installation:

• Tomcat should not be run as the root user; it should be run as a

dedicated user (usually named tomcat) that has minimum operating

system permissions. It should not be possible to log in remotely as the

tomcat user.

• All Tomcat files should be owned by user root and group tomcat (the

tomcat user’s default group should be group tomcat). File/directory

permissions should be set to owner read/write, group read only, and world

none. The exceptions are the logs , temp , and work directories, which

should be owned by the tomcat user instead of root .

• The default and example web applications included with the Tomcat

distribution should be removed if they are not needed.

• Auto-deployment should be disabled, and web applications should be

deployed as exploded directories rather than web application archives

(WAR files).

Implementing these recommendations means that, even if an attacker

compromises the Tomcat process, he or she cannot change the Tomcat

configuration, deploy new web applications, or modify existing web applications.

All of the steps in this section should be performed on the master build server

(casdev-master); the results will be copied to the CAS servers (casdev-srv01,

casdev-srv02, and casdev-srv03) later.

Create a tomcat user and tomcat group

Run the commands

casdev-master# groupadd -r tomcat

casdev-master# useradd -r -d /opt/tomcat -g tomcat -s /sbin/nologin t

omcat

to create a tomcat user and a tomcat group.

Set file ownership and permissions

Run the commands

Harden the installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 39

casdev-master# mkdir -p /opt/tomcat/latest/conf/Catalina/localhost

casdev-master# for dir in . conf webapps

> do

> cd /opt/tomcat/latest/$dir

> chown -R root.tomcat .

> chmod -R u+rwX,g+rX,o= .

> chmod -R g-w .

> done

casdev-master# for dir in logs temp work

> do

> cd /opt/tomcat/latest/$dir

> chown -R tomcat.tomcat .

> chmod -R u+rwX,g+rX,o= .

> chmod -R g-w .

> done

casdev-master#

to set the proper file ownerships and permissions. Note that, as discussed above,

some of the directories are owned by root , while others are owned by tomcat .

Remove example webapps

Run the commands

casdev-master# cd /opt/tomcat/latest

casdev-master# rm -rf temp/* work/*

casdev-master# cd webapps

casdev-master# rm -rf docs examples host-manager manager

to remove unneeded example web applications.

 Important: The command above does not remove the ROOT web

application from the webapps directory because it can be useful in a

development/test environment to quickly determine whether Tomcat is

working properly. However, when deploying Tomcat to production servers, the

ROOT application should be removed along with the rest of the default web

applications.

Harden the installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 40

Disable auto-deployment

To disable auto-deployment, edit the file /opt/tomcat/latest/conf/server.xml

and locate the Host XML tag (around line 148), which should look something like

this:

<Host name="localhost" appBase="webapps"

unpackWARs="true" autoDeploy="true">

Disable application auto-deployment and unpacking of web application archive files

by setting these attributes to false :

<Host name="localhost" appBase="webapps"

unpackWARs="false" autoDeploy="false">

References

• Tomcat Security Considerations

Harden the installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 41

https://tomcat.apache.org/tomcat-8.5-doc/security-howto.html

Configure TLS/SSL settings
All of the servers in the load balancer server pool (casdev-srv01, casdev-srv02,

and casdev-srv03) will use the same TLS/SSL certificate (because they will all

identify themselves by the same host name), so only one certificate needs to be

created.

All of the steps in this section should be performed on the master build server

(casdev-master); the results will be copied to the CAS servers (casdev-srv01,

casdev-srv02, and casdev-srv03) later.

Generate a private key and certificate signing request

The private key and certificate signing request can be generated using either the

openssl command or the Java keytool command. The former creates keys and

certificates in standard formats that have to be imported to a Java keystore for use

by Tomcat; the latter creates a Java keystore from which keys and certificates have

to be exported for use by non-Java applications. There really isn’t any technical

reason to choose one tool over the other; use whichever one you’re most

comfortable with. In this document we will use openssl and then import to a Java

keystore in the next step. Run the commands

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 42

casdev-master# cd /etc/pki/tls/private

casdev-master# openssl req -nodes -newkey rsa:2048 -sha256 -keyout ca

sdev.key -out casdev.csr

Generating a 2048 bit RSA private key

.........+++

.............+++

writing new private key to 'casdev.key'

You are about to be asked to enter information that will be incorpora

ted

into your certificate request.

What you are about to enter is what is called a Distinguished Name o

r a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US

State or Province Name (full name) []: New York

Locality Name (eg, city) [Default City]: New York

Organization Name (eg, company) [Default Company Ltd]: The New School

Organizational Unit Name (eg, section) []: IT

Common Name (eg, your name or your server's hostname) []: casdev.news

chool.edu

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

casdev-master#

to generate a private key and certificate signing request. (Replace the contents of

the Distinguished Name fields with values appropriate for your organization.)

Submit the certificate signing request (casdev.csr) to your certificate authority to

obtain a certificate. When the certificate comes back from the certificate authority,

copy it and any intermediate certificate(s) into /etc/pki/tls/certs , saving them

as casdev.crt , casdev-intermediate.crt , etc. If your certificate authority offers

multiple certificate formats, opt for the PEM format, which looks like:

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 43

-----BEGIN CERTIFICATE-----

AQEFAAOCAQ8AMIIBCgKCAQEAtGCKiysqhQF4/AA5Pvi7EIIRqbtVx/IF0CAFK8lv

6uDJDHjd7bSNhhzYJxUNCdN0DacYT5wI/s4n3mLEXQrIt0KsUdPD+s7qP9Lw05hI

WaG7KhP6RZ+UtWSvHwIZJUHvlJvh2GlARw/XwV3iHG3mxfl5nCLNihAR9S1r2qEY

...several more lines of base64-encoded data...

-----END CERTIFICATE----

Import the certificate into a Java keystore

To import a certificate into a Java keystore, the first step is to combine the

certificate chain (the host certificate and any intermediate certificates) into a single

file. If you are using a self-signed certificate or a certificate authority whose root

certificate is not distributed with RHEL 7, include the root certificate as well. The

certificates must be placed in certificate chain order from “lowest” to “highest” as

shown:

casdev-master# cd /etc/pki/tls/certs

casdev-master# cat casdev.crt casdev-intermediate.crt [root.crt] > /o

pt/tomcat/casdev-all.crt

Next, create a PKCS#12-format file from the combined certificates and the private

key file:

casdev-master# cd /opt/tomcat

casdev-master# openssl pkcs12 -export -inkey /etc/pki/tls/private/cas

dev.key -in casdev-all.crt -name tomcat -out casdev.p12

Enter Export Password: changeit

Verifying - Enter Export Password: changeit

casdev-master#

Be sure to enter a non-blank password, or the import command (next) will fail.

Next, import the PKCS#12-format file to a Java keystore:

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 44

casdev-master# keytool -importkeystore -srckeystore casdev.p12 -srcst

oretype pkcs12 -destkeystore keystore.jks

Enter destination keystore password: changeit

Re-enter new password: changeit

Enter source keystore password: changeit

Entry for alias tomcat successfully imported.

Import command completed: 1 entries successfully imported, 0 entrie

s failed or cancelled

casdev-master#

 Warning: The default keystore password used by Tomcat is changeit,

hence its use in the examples above (and further below). Obviously,

something other than this default value should be used in a production

Tomcat deployment.

Finally, delete the intermediate files and set the appropriate permissions on the

keystore file:

casdev-master# rm -f casdev-all.crt casdev.p12

casdev-master# chown root.tomcat keystore.jks

casdev-master# chmod 640 keystore.jks

Configure Tomcat server settings

Edit the file /opt/tomcat/latest/conf/server.xml and make the changes

described below to disable unneeded network connectors and to enable and

properly configure the TLS/SSL connector.

Disable the SHUTDOWN port

Locate the Server XML tag (around line 22), which should look something like

this:

<Server port="8005" shutdown="SHUTDOWN">

We will be using systemd to manage Tomcat (see Configuresystemd to start

Tomcat (page 56)), so the SHUTDOWN port is not needed. Change the port number

to -1 to disable it, as shown below:

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 45

<Server port="-1" shutdown="SHUTDOWN">

Disable the HTTP connector

Locate the first definition of an HTTP connector on port 8080 (around line 69),

which should look something like this:

<Connector port="8080" protocol="HTTP/1.1"

connectionTimeout="20000"

redirectPort="8443" />

As discussed previously, all CAS communications should occur over a secure

(TLS) channel, so this connector is not needed. Comment it out by inserting <!--

and --> around it, like this:

<!--

<Connector port="8080" protocol="HTTP/1.1"

connectionTimeout="20000"

redirectPort="8443" />

-->

Enable and configure the HTTPS connector

Locate the first definition of a TLS/SSL connector on port 8443 (around line 88). As

shipped with Tomcat, it will be commented out and look something like this:

<!--

<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioP

rotocol"

maxThreads="150" SSLEnabled="true">

<SSLHostConfig>

<Certificate certificateKeystoreFile="conf/localhost-rsa.jk

s"

type="RSA" />

</SSLHostConfig>

</Connector>

-->

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 46

Remove the comment lines (<!-- and -->) and change the connector definition

to look like this:

<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioPr

otocol"

sslImplementationName="org.apache.tomcat.util.net.openssl.OpenSSL

Implementation"

SSLEnabled="true" connectionTimeout="20000" maxThreads="150">

<SSLHostConfig

ciphers="ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POL

Y1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDH

E-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES12

8-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDH

E-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:EC

DHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:E

CDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RS

A-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RS

A-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA3

84:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DS

S"

honorCipherOrder="true" protocols="all,-SSLv2Hello,-SSLv2,-SS

Lv3"

disableSessionTickets="true">

<Certificate

certificateKeystoreFile="/opt/tomcat/keystore.jks"

certificateKeystorePassword="changeit"

type="RSA" />

</SSLHostConfig>

<UpgradeProtocol className="org.apache.coyote.http2.Http2Protoco

l" />

</Connector>

To obtain the most up-to-date list of ciphers for the ciphers attribute, use the

Mozilla SSL Configuration Generator and select “Apache” and “Intermediate.”

Then copy and paste the value of the SSLCipherSuite parameter.

 Important: The value of the certificateKeystorePassword attribute should

be the same password you entered for the keystore file in Import the

certificate into a Java keystore (page 44), above.

 Note: The configuration above uses TCP port 8443 for the HTTPS (TLS/

SSL) port. This is the conventional port used by Tomcat and CAS, but is not a

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 47

https://mozilla.github.io/server-side-tls/ssl-config-generator/

requirement. It’s also possible, for example, to use the well-known HTTPS

port (TCP 443) or any other port, simply by changing the value of the port

attribute on the connector definition.

Disable the AJP connector

Locate the definition of the AJP (Apache JServ Protocol) connector on port 8009

(around line 115), which should look something like this:

<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />

AJP is mostly used when front-ending Tomcat with Apache HTTPD. We’re not

doing that, so this connector is not needed. Comment it out by inserting <!-- and

--> around it, like this:

<!-- <Connector port="8009" protocol="AJP/1.3" redirectPort="8443"

/> -->

References

• Tomcat Configuration Reference: The HTTP Connector

• Mozilla Wiki: Security/Server Side TLS

• Digital Ocean: OpenSSL Essentials

• Acmetek: Java Keytool Commands

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 48

https://tomcat.apache.org/tomcat-8.5-doc/config/http.html
https://wiki.mozilla.org/Security/Server_Side_TLS
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://www.sslsupportdesk.com/java-keytool-commands/

Configure asynchronous request support
CAS 5 requires the servlet container to support asynchronous requests. To enable

asynchronous request support in Tomcat, edit the file /opt/tomcat/latest/conf/

web.xml , locate the definition of the default web application servlet (around line

103), and add the <async-supported> directive:

<servlet>

<servlet-name>default</servlet-name>

<servlet-class>org.apache.catalina.servlets.DefaultServlet</servl

et-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>

<init-param>

<param-name>listings</param-name>

<param-value>false</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

<async-supported>true</async-supported>

</servlet>

Then locate the definition of the JSP compiler and execution servlet (around line

251) and make the same addition:

<servlet>

<servlet-name>jsp</servlet-name>

<servlet-class>org.apache.jasper.servlet.JspServlet</servlet-clas

s>

<init-param>

<param-name>fork</param-name>

<param-value>false</param-value>

</init-param>

<init-param>

<param-name>xpoweredBy</param-name>

<param-value>false</param-value>

</init-param>

<load-on-startup>3</load-on-startup>

<async-supported>true</async-supported>

</servlet>

Configure asynchronous request support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 49

The steps above should be performed on the master build server (casdev-

master); the results will be copied to the CAS servers (casdev-srv01, casdev-

srv02, and casdev-srv03) later.

References

• CAS 5: Servlet Container Configuration

Configure asynchronous request support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 50

https://apereo.github.io/cas/5.2.x/installation/Configuring-Servlet-Container.html

Configure X-Forwarded-For header
processing
When Tomcat is installed behind a load balancer as it will be in our environment,

incoming network connections will have a source address of the load balancer’s

internal interface rather than the address of the client system on the other side of

the load balancer. This will have a negative impact on Tomcat (as well as CAS)

logging, since the logs will not be able to identify individual systems by their

network addresses. It will also prevent certain CAS features, such as adaptive

authentication based on client address geolocation, from working correctly.

To correct this situation, most load balancers can be configured to insert an X-

Forwarded-For HTTP header into the data stream to identify the address of the

connecting client system, and Tomcat can be configured to look for this header and

substitute the address provided for the source address attached to the connection

from the load balancer.

To configure Tomcat to process X-Forwarded-For HTTP headers, edit the file

/opt/tomcat/latest/conf/server.xml again and locate the definition of the

AccessLogValve (around line 160, after inserting the changes in Configure TLS/

SSL settings (page 42)) and

1. Insert a RemoteIpValve definition above it.

2. Add a requestAttributesEnabled attribute to the AccessLogValve

definition.

When finished, things should look something like this:

<!-- RemoteIp valve, process X-Forwarded-For headers

Documentation at: /docs/config/valve.html -->

<Valve className="org.apache.catalina.valves.RemoteIpValve"

internalProxies="192\.168\.1\.10" />

<!-- Access log processes all example.

Documentation at: /docs/config/valve.html

Note: The pattern used is equivalent to using pattern="common"

-->

<Valve className="org.apache.catalina.valves.AccessLogValve" director

y="logs"

prefix="localhost_access_log" suffix=".txt"

requestAttributesEnabled="true"

pattern="%h %l %u %t "%r" %s %b" />

Configure X-Forwarded-For header processing PDF last generated: October 18, 2018

Deploying Apereo CAS Page 51

The value of the internalProxies attribute on the RemoteIpValve declaration

should be a regular expression that matches the IP address(es) of the internal

interface(s) of the load balancer(s). Since ‘.’ is a special character in regular

expressions, it should be escaped with a backslash. To represent multiple IP

addresses, separate them with ‘|’ symbols (for example,

192\.168\.1\.10|192\.168\.1\.20).

The steps above should be performed on the master build server (casdev-

master); the results will be copied to the CAS servers (casdev-srv01, casdev-

srv02, and casdev-srv03) later.

References

• Tomcat Configuration Reference: The Valve Component

Configure X-Forwarded-For header processing PDF last generated: October 18, 2018

Deploying Apereo CAS Page 52

https://tomcat.apache.org/tomcat-8.5-doc/config/valve.html

Tune resource caching settings
To improve performance, Tomcat is configured by default to cache static resources.

However, the size of the cache is too small to work effectively with the CAS

application. To tune Tomcat’s cache settings, edit the file /opt/tomcat/latest/

conf/context.xml , locate the definition of the default context (around line 19), and

add a <Resources> directive at the bottom:

<Context>

<!-- Default set of monitored resources. If one of these change

s, the -->

<!-- web application will be reloade

d. -->

<WatchedResource>WEB-INF/web.xml</WatchedResource>

<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>

<!-- Uncomment this to disable session persistence across Tomcat

restarts -->

<!--

<Manager pathname="" />

-->

<!-- Enable caching, increase the cache size (10240 default), inc

rease -->

<!-- the ttl (5s defaul

t) -->

<Resources cachingAllowed="true" cacheMaxSize="40960" cacheTtl="6

0000" />

</Context>

The step above should be performed on the master build server (casdev-master);

the results will be copied to the CAS servers (casdev-srv01, casdev-srv02, and

casdev-srv03) later.

Tune resource caching settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 53

Configure asynchronous logging support
CAS 5’s logging subsystem automatically inserts itself into the runtime application

context at startup time, and is designed to clean up the logging context when

Tomcat shuts down. Unfortunately, the default Tomcat JarScanner configuration

skips over JAR files named log4j*.jar , which prevents this feature from working.

To correct this problem, edit the file /opt/tomcat/latest/conf/

catalina.properties and locate the lines defining the jarsToSkip property

(around lines 108-134), and then the specific line of that definition that includes

log4j*.jar (around line 128):

tomcat.util.scan.StandardJarScanFilter.jarsToSkip=\

...

jmx-tools.jar,jta*.jar,log4j*.jar,mail*.jar,slf4j*.jar,\

...

and remove log4j*.jar from that line:

tomcat.util.scan.StandardJarScanFilter.jarsToSkip=\

...

jmx-tools.jar,jta*.jar,mail*.jar,slf4j*.jar,\

...

The step above should be performed on the master build server (casdev-master);

the results will be copied to the CAS servers (casdev-srv01, casdev-srv02, and

casdev-srv03) later.

References

• CAS 5: Servlet Container Configuration

• Tomcat Configuration Reference: The Jar Scanner Component

Configure asynchronous logging support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 54

https://apereo.github.io/cas/5.2.x/installation/Configuring-Servlet-Container.html
https://tomcat.apache.org/tomcat-8.5-doc/config/jar-scanner.html

Open TLS/SSL port in the firewall
For client systems to be able to communicate with the CAS server, the TCP port

that Tomcat’s HTTPS connector was configured to use earlier (see Enable and

configure the HTTPS connector (page 46)) must be opened in the operating

system firewall. To do this, first create a firewalld service configuration file called

/etc/firewalld/services/tomcat-https.xml with the following contents:

<?xml version="1.0" encoding="utf-8"?>

<service>

<short>Tomcat Secure HTTP (HTTPS)</short>

<description>Tomcat typically implements TLS/SSL-secured HTTP (HTTP

S) on a different port than a regular web server does (often so that

both servers can co-exist on the same system).</description>

<port protocol="tcp" port="8443"/>

</service>

to define the Tomcat HTTPS service. Then, run the commands

casdev-master# restorecon /etc/firewalld/services/tomcat-https.xml

casdev-master# chmod 640 /etc/firewalld/services/tomcat-https.xml

to assign the correct SELinux context and file permissions to the tomcat-

https.xml file. Finally, run the commands

casdev-master# firewall-cmd --zone=public --add-service=tomcat-https

--permanent

success

casdev-master# firewall-cmd --reload

success

casdev-master#

to open the newly-defined service in the system firewall.

The steps above should be performed on the master build server (casdev-

master); the results will be copied to the CAS servers (casdev-srv01, casdev-

srv02, and casdev-srv03) later.

Open TLS/SSL port in the firewall PDF last generated: October 18, 2018

Deploying Apereo CAS Page 55

Configure systemd to start Tomcat
RHEL 7 uses systemd (instead of init) to manage system resources. A unit is

any resource that systemd knows how to operate on and manage.

The steps below should be performed on the master build server (casdev-master);

the results will be copied to the CAS servers (casdev-srv01, casdev-srv02, and

casdev-srv03) later.

Define Tomcat as a service unit

Create the file /etc/systemd/system/tomcat.service with the following contents

to define Tomcat as a service unit to systemd :

Configure systemd to start Tomcat PDF last generated: October 18, 2018

Deploying Apereo CAS Page 56

[Unit]

Description=Apache Tomcat Web Application Container

After=network.target

[Service]

Type=forking

PIDFile=/var/run/tomcat.pid

UMask=0007

Tomcat variables

Environment='JAVA_HOME=/usr/lib/jvm/java-openjdk'

Environment='CATALINA_PID=/var/run/tomcat.pid'

Environment='CATALINA_HOME=/opt/tomcat/latest'

Environment='CATALINA_BASE=/opt/tomcat/latest'

Environment='CATALINA_OPTS=-Xms512M -Xmx2048M -XX:+UseParallelGC -ser

ver'

Needed to make use of Tomcat Native Library

Environment='LD_LIBRARY_PATH=/opt/tomcat/latest/lib'

ExecStart=/opt/tomcat/latest/bin/jsvc \

-Dcatalina.home=${CATALINA_HOME} \

-Dcatalina.base=${CATALINA_BASE} \

-Djava.awt.headless=true \

-Djava.util.logging.manager=org.apache.juli.ClassLoaderLo

gManager \

-Djava.util.logging.config.file=${CATALINA_BASE}/conf/log

ging.properties \

-cp ${CATALINA_HOME}/bin/commons-daemon.jar:${CATALINA_HO

ME}/bin/bootstrap.jar:${CATALINA_HOME}/bin/tomcat-juli.jar \

-pidfile ${CATALINA_PID} \

-java-home ${JAVA_HOME} \

-user tomcat \

$CATALINA_OPTS \

org.apache.catalina.startup.Bootstrap

ExecStop=/opt/tomcat/latest/bin/jsvc \

-pidfile ${CATALINA_PID} \

-stop \

org.apache.catalina.startup.Bootstrap

[Install]

WantedBy=multi-user.target

Configure systemd to start Tomcat PDF last generated: October 18, 2018

Deploying Apereo CAS Page 57

 Important: Although a 2 GB maximum size for the Java heap is adequate

for CAS development and testing, production operation requires more

resources. When installing on the production servers, change -Xmx2048M to

-Xmx4096M in the “Tomcat variables” section.

Enable the Tomcat service unit

Run the commands

casdev-master# restorecon /etc/systemd/system/tomcat.service

casdev-master# chmod 644 /etc/systemd/system/tomcat.service

to assign the correct SELinux context and file permissions to the tomcat.service

file, and run the command

casdev-master# systemctl enable tomcat.service

to enable the Tomcat service in systemd . This will cause systemd to start Tomcat

at system boot time. Additionally, the following commands may now be used to

manually start, stop, restart, and check the status of the Tomcat service:

casdev-master# systemctl start tomcat

casdev-master# systemctl stop tomcat

casdev-master# systemctl restart tomcat

casdev-master# systemctl status tomcat

Configure systemd to start Tomcat PDF last generated: October 18, 2018

Deploying Apereo CAS Page 58

Test the Tomcat installation
Before distributing the Tomcat installation to the CAS servers, it should be tested

on the master build server (casdev-master) to ensure that everything is working

properly.

Modify the ROOT web application to identify the server and

client

Before starting the testing, edit the file /opt/tomcat/latest/webapps/ROOT/

index.jsp and find the “congrats” section (around line 51):

<div id="congrats" class="curved container">

<h2>If you're seeing this, you've successfully installed Tomcat.

Congratulations!</h2>

</div>

Insert the text shown below to display the host name, IP address, and port number

of the Tomcat server:

<div id="congrats" class="curved container">

<h2>If you're seeing this, you've successfully installed Tomcat.

Congratulations!</h2>

<p>Server:

<%= request.getLocalName() %> /

<%= request.getLocalAddr() %> /

<%= request.getLocalPort() %></p>

<p>Client:

<%= request.getRemoteHost() %> /

<%= request.getRemoteAddr() %> /

<%= request.getRemotePort() %></p>

</div>

This will be helpful later when testing the CAS servers through the load balancer, to

ensure that requests are being distributed across the server pool, and also to

ensure that X-Forwarded-For header processing is working correctly.

Start Tomcat

Start the Tomcat server by running the command

Test the Tomcat installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 59

casdev-master# systemctl start tomcat

Review the contents of the log file (/var/log/tomcat/catalina.yyyy-mm-dd.out)

for errors. All log messages in a successful start should be at log level INFO . If any

messages are at log level WARNING or SEVERE , then something is wrong and

needs to be corrected.

 Note: The Tomcat SSL connector configuration created in Configure TLS/

SSL settings (page 42) includes a setting for the disableSessionTickets

property (setting it to true). This is necessary to avoid a bug in Tomcat’s

JSSE with OpenSSL implementation (BugID 59811). However, including the

property will cause this warning message to appear:

DD-MMM-YYYY HH:MM:SS.sss WARNING [main]

org.apache.tomcat.util.net.SSLHostConfig.setConfigType The property

[disableSessionTickets] was set on the SSLHostConfig named

[_default_] and is for connectors of type [OPENSSL] but the

SSLHostConfig is being used with a connector of type [EITHER]

This warning message is being printed erroneously (as configured, the JSSE

connector is using OpenSSL) and should be ignored.

The last line of the log file in a successful start should look like this:

DD-MMM-YYYY HH:MM:SS.sss INFO [main] org.apache.catalina.startup.Cata

lina.start Server startup in N ms

Check that the Tomcat Native Library was correctly

installed

After reviewing the log file in general, look specifically for messages that the

Tomcat Native Library was successfully loaded and that it’s using the OpenSSL

library:

Test the Tomcat installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 60

https://bz.apache.org/bugzilla/show_bug.cgi?id=59811

DD-MMM-YYYY HH:MM:SS.sss INFO [main] org.apache.catalina.core.AprLife

cycleListener.lifecycleEvent Loaded APR based Apache Tomcat Native li

brary [1.2.12] using APR version [1.6.2].

DD-MMM-YYYY HH:MM:SS.sss INFO [main] org.apache.catalina.core.AprLife

cycleListener.initializeSSL OpenSSL successfully initialized [OpenSS

L 1.1.0f 25 May 2017]

If instead a message like this appears:

DD-MMM-YYYY HH:MM:SS.sss INFO [main] org.apache.catalina.core.AprLife

cycleListener.lifecycleEvent The APR based Apache Tomcat Native libra

ry which allows optimal performance in production environments was no

t found on the java.library.path: /usr/java/packages/lib/amd64:/usr/l

ib64:/lib64:/lib:/usr/lib

then the Native Library was not installed correctly, and the installation needs to be

fixed.

Access the ROOT web application

Open up a web browser and enter the URL of Tomcat’s TLS port on the master

build server:

https://casdev-master.newschool.edu:8443

Expect the browser to complain about the TLS/SSL certificate because the host

name of the server does not match the name in the certificate. Click through the

prompts to visit the site anyway, and you should see something like Figure 3,

below:

Test the Tomcat installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 61

Figure 3. The ROOT web application page

Notice the host name, IP address, and port number of the server and client

displayed in the top (dark green) section; this will be important when testing

through the load balancer later.

Using the features of your web browser, examine the details of the TLS certificate.

(In Google Chrome, this is done by typing Ctrl+Shift+I to bring up the Developer

Tools window, selecting the “Security” tab, and clicking “View certificate.”) Check

that the certificate is the one created and installed in Configure TLS/SSL settings

(page 42) and that the certificate chain is valid from the root to the certificate.

 Note: The gray buttons for “Server Status,” “Manager App,” and “Host

Manager,” as well as most of the links in the blue and yellow areas of the

page, will not work because they point to pages or example web applications

that were deleted in the server hardening step.

Test the Tomcat installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 62

Distribute the Tomcat installation to the
CAS servers
Once the Tomcat server has been successfully built, configured, and tested on the

master build server (casdev-master) as described in the previous sections, the

installation can be copied to the CAS servers (casdev-srv01, casdev-srv02, and

casdev-srv03). It is not necessary (or desirable) to install Tomcat on casdev-

casapp or casdev-samlsp.

Create a distribution tar file

To distribute all relevant files in the Tomcat installation to the CAS servers, we will

assemble them all into a single tar archive that can be copied to each server and

extracted. First, run the commands

casdev-master# systemctl stop tomcat

casdev-master# cd /opt/tomcat/latest

casdev-master# rm -rf logs/* work/*

to shut down the Tomcat server and remove files that don’t need to be included in

the archive. Then run the commands

casdev-master# cd /

casdev-master# tar czf /tmp/tomcat-files.tgz etc/tomcat opt/apr opt/o

penssl opt/tomcat var/cache/tomcat var/lib/tomcat var/cache/tomcat et

c/firewalld/services/tomcat-https.xml etc/systemd/system/tomcat.servi

ce

to create the tar archive in /tmp/tomcat-files.tgz .

Create an installation shell script

In addition to extracting the tar archive on each CAS server, commands must be

executed to create the tomcat user and group, reset the correct user and group

ownership of the installation, open firewall ports, and start the Tomcat service. To

make it easier to run these commands on each server, they can be collected into a

shell script (called, for example, /opt/scripts/tomcat-install.sh) like this:

Distribute the Tomcat installation to the CAS servers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 63

#!/bin/sh

echo "--- Installing on `hostname`"

if [-f /tmp/tomcat-files.tgz]

then

cd /

tar xzf /tmp/tomcat-files.tgz

groupadd -r tomcat

useradd -r -d /opt/tomcat -g tomcat -s /sbin/nologin tomcat

for dir in . conf webapps

do

cd /opt/tomcat/latest/$dir

chown -R root.tomcat .

done

for dir in logs temp work

do

cd /opt/tomcat/latest/$dir

chown -R tomcat.tomcat .

done

restorecon /etc/firewalld/services/tomcat-https.xml

firewall-cmd --zone=public --add-service=tomcat-https --permanent

firewall-cmd --reload

restorecon /etc/systemd/system/tomcat.service

systemctl enable tomcat.service

systemctl start tomcat

rm -f /tmp/tomcat-files.tgz /tmp/tomcat-install.sh

echo "Installation complete."

else

echo "Cannot find /tmp/tomcat-files.tgz; nothing installed."

fi

exit 0

This script will extract the contents of the tar archive to the right places and then

run all the necessary commands to finish the installation and start Tomcat.

 Note: There is nothing special about the directory /opt/scripts (you can

create it wherever you like, or not at all), but since we will be creating several

Distribute the Tomcat installation to the CAS servers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 64

little “helper” shell scripts throughout this deployment process, it makes sense

to collect them all in a common location on the master build server.

Copy files to each server and run the installation script

To complete the setup of each CAS server, the tar archive and installation shell

script need to be copied to each server, and the installation script executed. This

can be done manually, or with a shell loop as shown below:

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/tomcat-files.tgz casdev-${host}:/tmp/tomcat-files.tgz

> scp -p /opt/scripts/tomcat-install.sh casdev-${host}:/tmp/tomcat-in

stall.sh

> ssh casdev-${host} sh /tmp/tomcat-install.sh

> done

casdev-master#

Test Tomcat on each server

Open up a web browser and enter the URL of Tomcat’s TLS port on each CAS

server:

https://casdev-srv01.newschool.edu:8443

https://casdev-srv02.newschool.edu:8443

https://casdev-srv03.newschool.edu:8443

As in the previous test, expect the browser to complain about the TLS/SSL

certificate because the host name of the server does not match the name in the

certificate. Verify that the Tomcat “success” page appears on each server, just as it

did for the development server.

Distribute the Tomcat installation to the CAS servers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 65

Configure the load balancers
Once all the CAS servers have Tomcat up and running, we can configure the load

balancers to route requests to them.

 Note: The configuration steps in this section are for F5 BIG-IP Local Traffic

Manager (LTM) load balancers; other load balancers should provide similar

capabilities.

Correcting our biggest mistake

Our current CAS server listens for connections on TCP port 8447 instead of

the more common 8443 or 443. The history of this decision isn’t important,

but experience has taught us that it was a Really Big Mistake. Many

organizations limit outbound Internet access from their local area networks

to small(ish) lists of well-known ports or services, and TCP port 8447 is

almost never on those lists.

If access to port 8447 is blocked, then users have no way to authenticate to

CAS-enabled New School applications. This has been a problem for some

of our users when using the EDUROAM roaming access service at other

universities, and also for some of our students and part-time faculty who

work at financial firms or other security-conscious organizations in New

York City. Port 8443 (the “usual” port used by CAS) would have been a

somewhat better choice, but not a perfect one, because there are

organizations that block outbound access to that port as well.

To eliminate this problem, and ensure that our users can authenticate

regardless of what network they’re using, our new CAS environment will be

configured to listen for connections on TCP port 443, the standard HTTPS

port.

Define the CAS server nodes

Define each of the CAS server nodes so that they can be referenced elsewhere in

the configuration.

Configure the load balancers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 66

ltm node /Common/casdev-srv01 {

address 192.168.100.101

description "CAS Development Server 01"

}

ltm node /Common/casdev-srv02 {

address 192.168.100.102

description "CAS Development Server 02"

}

ltm node /Common/casdev-srv03 {

address 192.168.100.103

description "CAS Development Server 03"

}

Define the CAS server pool

Group the CAS server nodes into a server pool. Pool members can be assigned to

connections via round-robin or any other reasonable method that achieves the

organization’s desired results.

ltm pool /Common/casdev_pool {

description "CAS Development 8443 Pool"

members {

/Common/casdev-srv01:8443 {

address 192.168.100.101

}

/Common/casdev-srv02:8443 {

address 192.168.100.102

}

/Common/casdev-srv03:8443 {

address 192.168.100.103

}

}

monitor /Common/https_8443

}

Define a monitor for the pool to keep track of which servers are up and responding

to requests. The https_8443 monitor is based on F5’s standard https monitor; it

connects to each pool server via HTTPS on port 8443 every 5 seconds and issues

a GET / HTTP request.

Configure the load balancers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 67

ltm monitor https /Common/https_8443 {

cipherlist DEFAULT:+SHA:+3DES:+kEDH

compatibility enabled

defaults-from /Common/https

description "HTTPS Port 8443 Port Monitor"

destination *:8443

interval 5

ip-dscp 0

recv none

recv-disable none

send "GET /\\r\\n"

time-until-up 0

timeout 16

}

This is a basic monitor that just checks whether Tomcat and the server it’s running

on are responding. Later, after building and deploying the CAS server application,

we will configure a more specific monitor (see Define a CAS-specific service

monitor on the load balancers (page 104)).

Define a client SSL profile

Define a client SSL profile to enable the F5 to accept and terminate client requests

using TLS/SSL. This profile specifies the TLS/SSL certificate that will be used for

the connection.

Configure the load balancers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 68

ltm profile client-ssl /Common/casdev_clientssl {

app-service none

cert /Common/casdev.crt

cert-key-chain {

casdev_ThawteSHA256IntermediateCA_Use_for_SHA256-NoSHA1crossr

oot {

cert /Common/casdev.crt

chain /Common/ThawteSHA256IntermediateCA_Use_for_SHA256-N

oSHA1crossroot.crt

key /Common/casdev.key

}

}

chain /Common/ThawteSHA256IntermediateCA_Use_for_SHA256-NoSHA1cro

ssroot.crt

defaults-from /Common/nsu_clientssl

inherit-certkeychain false

key /Common/casdev.key

passphrase none

}

The TLS/SSL private key and certificate files referenced in this profile are the same

ones that were created for the Tomcat server in Configure TLS/SSL settings (page

42); they should be installed on the load balancer for use by the profile.

Define a server profile

Define a server SSL profile to direct the F5 to access the Tomcat server pool using

HTTPS instead of HTTP.

ltm profile server-ssl /Common/casdev_serverssl {

app-service none

defaults-from /Common/serverssl

}

Define a persistence profile

Although the basic CAS login sequence is stateless, there are some features of the

server that implement flows whose steps must all be performed on the same server

to preserve state. To achieve this, define a persistence profile with a timeout equal

to the server.session.timeout property of the CAS server (5 minutes by default).

Configure the load balancers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 69

ltm persistence source-addr /Common/casdev_persistence_profile {

app-service none

defaults-from /Common/cookie

expiration 5:0

}

The above profile uses a session cookie based persistence profile in which the F5

sets a cookie in the user’s browser. This will ensure that all connection requests

from the browser session where the cookie is set are directed to the same pool

member for the duration of the timeout period. Another alternative would be to use

a source address based persistence profile, which would ensure that all connection

requests from a particular IP address are directed to the same pool member. The

cookie based approach is preferred as it is more granular, resulting in better load

balancing performance.

Enable the insertion of X-Forwarded-For headers

In Configure X-Forwarded-For header processing (page 51), we configured Tomcat

to process X-Forwarded-For HTTP headers inserted by a load balancer. Define an

HTTP profile on the F5 to enable the insertion of those headers.

ltm profile http /Common/http-casdev-profile {

app-service none

defaults-from /Common/http

enforcement {

unknown-method allow

}

insert-xforwarded-for enabled

proxy-type reverse

}

Define the virtual interface

Define the virtual interface that will listen on the user-facing side of the load

balancer. As discussed at the beginning of this section, we want our CAS service to

be available on TCP port 443, the standard HTTPS port. Configure the virtual

interface to listen for connections on TCP port 443 and redirect them to TCP port

8443 on one of the pool servers. Set the interface to use the persistence profile

defined above.

Configure the load balancers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 70

ltm virtual /Common/casdev_https_vs {

description "CAS Development https VIP"

destination /Common/192.168.200.10:443

ip-protocol tcp

mask 255.255.255.255

persist {

/Common/casdev_persistence_profile {

default yes

}

}

pool /Common/casdev_pool

profiles {

/Common/casdev_clientssl {

context clientside

}

/Common/casdev_serverssl {

context serverside

}

/Common/http-casdev-profile { }

/Common/tcp { }

source 0.0.0.0/0

source-address-translation {

type automap

}

translate-address enabled

translate-port enabled

}

As discussed previously, CAS communications should always take place over a

secure channel. Configure the virtual interface to redirect HTTP connections to

HTTPS.

Configure the load balancers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 71

ltm virtual /Common/casdev_http_vs {

description "CAS Development http VIP"

destination /Common/192.168.200.10:80

ip-protocol tcp

mask 255.255.255.255

profiles {

/Common/http { }

/Common/tcp { }

}

rules {

/Common/http_to_https_irule

}

source 0.0.0.0/0

translate-address enabled

translate-port enabled

}

Test the servers through the load balancer

Once the F5 has been configured, repeat the testing performed earlier using the

virtual address assigned to the load balancer’s virtual interface:

https://casdev.newschool.edu

Since this host name corresponds to the host name in the TLS certificate installed

on the CAS servers, check to ensure that no browser warnings about the certificate

appear, and that the certificate chain is valid all the way back up to the root

certificate authority.

Perform tests from multiple client systems with different addresses to ensure that

the round-robin (or other selected method) of distributing requests across the pool

is working properly.

Confirm that the IP address of the client system is displayed in the top (dark green)

section of the page rather than the IP address of the load balancer. This will

indicate that the X-Forwarded-For header processing has been properly

configured.

Configure the load balancers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 72

Perform a TLS/SSL check on the servers (optional)

If the load balancer’s virtual interface is accessible from the Internet, use the

Qualys® SSL Labs SSL Server Test to check that TLS/SSL is correctly configured

and that the server receives an overall ‘A’ rating. If any other rating is received,

check the test report for errors and correct them.

If the load balancer’s virtual interface is not accessible from the Internet, use the

testssl.sh command line tool instead. This tool performs a similar battery of

tests; the principal difference is that it doesn’t assign a letter grade to the overall

results.

Configure the load balancers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 73

https://www.ssllabs.com/ssltest/
https://github.com/drwetter/testssl.sh
https://github.com/drwetter/testssl.sh

Install HTTPD and PHP on the client
servers

Summary: A CAS-enabled Apache HTTPD server and a

SAML2-enabled Apache HTTPD server will be used as clients to test

the CAS server. PHP will be used to help examine user attribute data

passed back to the clients from the server.

To test the operation of our CAS server environment, we need a client application

that will prompt for a user name and password (and perhaps other authentication

factors) and then contact the CAS server to authenticate that user, and request/

accept attribute information describing the user. Since the development

environment will support both the CAS and SAML2 protocols for this purpose, we

need two client applications—one for each protocol.

There are a variety of open-source and commercial libraries and toolkits that can

be used to build CAS or SAML2 support into client applications, but building client

applications from scratch is beyond the scope of this project. Therefore, we will

instead use the Apache HTTPD server as our client, with CAS support enabled by

the Apereo mod_auth_cas plug-in, and SAML2 support enabled by the Shibboleth

Consortium’s Service Provider distribution. We will install the clients on two

separate servers, casdev-casapp.newschool.edu and casdev-

samlsp.newschool.edu.

This section describes the Apache HTTPD and PHP (for processing attributes)

installation steps common to both servers; the protocol-specific configuration of

each server will be described in later sections.

References

• Apereo mod_auth_cas

• Shibboleth Service Provider

• CAS 5: CAS Clients

• Wikipedia: Libraries and toolkits to develop SAML actors and SAML-

eanbled services

Install HTTPD and PHP on the client servers PDF last generated: October 18, 2018

Deploying Apereo CAS Page 74

https://github.com/apereo/mod_auth_cas
https://www.shibboleth.net/products/service-provider/
https://apereo.github.io/cas/5.2.x/integration/CAS-Clients.html
https://en.wikipedia.org/wiki/SAML-based_products_and_services#Libraries_and_toolkits_to_develop_SAML_actors_and_SAML-enabled_services
https://en.wikipedia.org/wiki/SAML-based_products_and_services#Libraries_and_toolkits_to_develop_SAML_actors_and_SAML-enabled_services

Install software packages
As discussed in the introduction to this section (page 74), we need to install

Apache HTTPD and PHP on the servers. We also need to install the mod_ssl

plugin for Apache, which enables TLS/SSL support. Run the commands

yum -y install httpd

yum -y install mod_ssl

yum -y install php

on casdev-casapp and casdev-samlsp to install these packages. It is not

necessary (or desirable) to install HTTPD and PHP on casdev-srv01, casdev-

srv02, or casdev-srv03.

Install software packages PDF last generated: October 18, 2018

Deploying Apereo CAS Page 75

Configure TLS/SSL settings
Apache HTTPD’s TLS/SSL settings must be configured and a TLS/SSL certificate

must be provided to ensure that all communications with the CAS server occur

over a secure channel.

 Note: The steps below are shown for casdev-casapp; they should also be

performed on casdev-samlsp with host names substituted as appropriate.

Generate private keys and certificate signing requests

The private key and certificate signing request are generated using the openssl

command. Run the commands

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 76

casdev-casapp# cd /etc/pki/tls/private

casdev-casapp# openssl req -nodes -newkey rsa:2048 -sha256 -keyout ca

sapp.key -out casapp.csr

Generating a 2048 bit RSA private key

.........+++

.............+++

writing new private key to 'casapp.key'

You are about to be asked to enter information that will be incorpora

ted

into your certificate request.

What you are about to enter is what is called a Distinguished Name o

r a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US

State or Province Name (full name) []: New York

Locality Name (eg, city) [Default City]: New York

Organization Name (eg, company) [Default Company Ltd]: The New School

Organizational Unit Name (eg, section) []: IT

Common Name (eg, your name or your server's hostname) []: casdev-casa

pp.newschool.edu

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

casdev-casapp#

to generate a private key and certificate signing request. (Replace the contents of

the Distinguished Name fields with values appropriate for your organization.)

Submit the certificate signing request (casapp.csr) to your certificate authority to

obtain a certificate.

When the certificate comes back from the certificate authority, copy it and any

intermediate certificate(s) into /etc/pki/tls/certs , saving them as casapp.crt ,

casapp-intermediate.crt , etc. If your certificate authority offers multiple

certificate formats, opt for the PEM format, which looks like:

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 77

-----BEGIN CERTIFICATE-----

AQEFAAOCAQ8AMIIBCgKCAQEAtGCKiysqhQF4/AA5Pvi7EIIRqbtVx/IF0CAFK8lv

6uDJDHjd7bSNhhzYJxUNCdN0DacYT5wI/s4n3mLEXQrIt0KsUdPD+s7qP9Lw05hI

WaG7KhP6RZ+UtWSvHwIZJUHvlJvh2GlARw/XwV3iHG3mxfl5nCLNihAR9S1r2qEY

...several more lines of base64-encoded data...

-----END CERTIFICATE----

Configure HTTPD settings

Edit the file /etc/httpd/conf/httpd.conf and locate the ServerName directive

(around line 95), which should look something like this:

#ServerName www.example.com:80

Uncomment the line and replace www.example.com:80 with casdev-

casapp.newschool.edu , and then add a UseCanonicalName directive on the next

line, like this:

ServerName casdev-casapp.newschool.edu

UseCanonicalName on

Then, at the bottom of the file, add the following lines:

<VirtualHost *:80>

Redirect permanent / https://casdev-casapp.newschool.edu/

</VirtualHost>

to automatically redirect any HTTP connections (port 80) to HTTPS connections

(port 443), which will help ensure that all communications occur over a secure

communications channel.

Configure TLS/SSL settings

Edit the file /etc/httpd/conf.d/ssl.conf and locate the SSLProtocol directive

(around line 75) and the SSLCipherSuite directive (around line 80), the two of

which should look something like this:

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 78

SSLProtocol all -SSLv2

SSLCipherSuite HIGH:MEDIUM:!aNULL:!MD5:!SEED:!IDEA

Change the values of these two directives, and add an SSLHonorCipherOrder

directive, so that it all looks like this:

SSLProtocol all -SSLv2 -SSLv3

SSLCipherSuite ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1

305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-E

CDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-GC

M-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RS

A-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDH

E-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:ECD

HE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-AE

S256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DE

S-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:A

ES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS

SSLHonorCipherOrder on

To obtain the most up-to-date values for these three attributes, use the Mozilla SSL

Configuration Generator and select “Apache” and “Intermediate.” Then copy and

paste the values given by the generator into the configuration above.

Then locate the SSLCertificateFile , SSLCertificateKeyFile , and

SSLCertificateChainFile directives (around lines 100-116) and set them to the

names of the server certificate file, private key file, and (if applicable) intermediate

certificate file:

SSLCertificateFile /etc/pki/tls/certs/casapp.crt

SSLCertificateKeyFile /etc/pki/tls/private/casapp.key

SSLCertificateChainFile /etc/pki/tls/certs/casapp-intermediate.crt

Check the HTTPD Configuration

Check that the HTTPD configuration files edited above do not have any syntax

errors by running the command

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 79

https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/

casdev-casapp# apachectl configtest

Syntax OK

casdev-casapp#

Configure PHP settings

Edit the file /etc/php.ini and locate the date.timezone setting (around line

878), which should look something like:

;date.timezone =

Uncomment the line and set the value to the local time zone:

date.timezone = America/New_York

The list of supported time zone names is available from the PHP List of Supported

Timezones .

Configure TLS/SSL settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 80

http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php

Open HTTP/HTTPS ports in the firewall
To communicate with client systems, HTTPD needs to be able to communicate on

TCP ports 80 (HTTP) and 443 (HTTPS). Run the commands

firewall-cmd --zone=public --add-service=http --permanent

success

firewall-cmd --zone=public --add-service=https --permanent

success

firewall-cmd --reload

success

#

on casdev-casapp and casdev-samlsp to open these ports in the system firewall.

Open HTTP/HTTPS ports in the firewall PDF last generated: October 18, 2018

Deploying Apereo CAS Page 81

Configure systemd to start HTTPD
RHEL 7 uses systemd (instead of init) to manage system resources. Run the

command

systemctl enable httpd.service

on casdev-casapp and casdev-samlsp to enable the HTTPD service in systemd .

This will cause systemd to start HTTPD at system boot time. Additionally, the

following commands may now be used to manually start, stop, restart, and check

the status of the HTTPD service:

systemctl start httpd

systemctl stop httpd

systemctl restart httpd

systemctl status httpd

Configure systemd to start HTTPD PDF last generated: October 18, 2018

Deploying Apereo CAS Page 82

Test the HTTPD installation

 Note: The steps below are shown for casdev-casapp; they should also be

performed on casdev-samlsp with host names substituted as appropriate.

Create a basic web page

Create the file /var/www/html/index.php with the following contents to make a

basic web page that displays some simple content:

<!DOCTYPE html>

<html lang="en">

<head>

<title>Hello, World!</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scal

e=1">

<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/

3.3.7/css/bootstrap.min.css">

</head>

<body>

<div class="container">

<h1>Hello, World!</h1>

<p><big>The quick brown fox jumped over the lazy dogs.</bi

g></p>

<?php phpinfo(); ?>

</div>

</body>

</html>

 Note: Inclusion of the Bootstrap stylesheet is optional; it just makes the

page a little more readable.

Start HTTPD

Start the HTTPD server by running the command

systemctl start httpd

Test the HTTPD installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 83

Review the contents of the log files in the /var/log/httpd directory for errors.

Access the server

Open up a web browser and enter the HTTP URL of the server:

http://casdev-casapp.newschool.edu

Check that the server redirects the browser to the HTTPS version of the URL (the

browser address bar should now display https://casdev-casapp.newschool.edu),

and that you see something like this:

Figure 4. The test example web page

Perform a TLS/SSL check on the servers (optional)

If casdev-casapp and casdev-samlsp are accessible from the Internet, use the

Qualys® SSL Labs SSL Server Test to check that TLS/SSL is correctly configured

and that the servers receive an overall ‘A’ rating. If any other rating is received,

check the test report for errors and correct them.

Test the HTTPD installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 84

https://www.ssllabs.com/ssltest/

If casdev-casapp and casdev-samlsp are not accessible from the Internet, use

the testssl.sh command line tool instead. This tool performs a similar battery of

tests; the principal difference is that it doesn’t assign a letter grade to the overall

results.

Test the HTTPD installation PDF last generated: October 18, 2018

Deploying Apereo CAS Page 85

https://github.com/drwetter/testssl.sh
https://github.com/drwetter/testssl.sh

Building the CAS server

Summary: Now that the development environment has been set up,

CAS server development can begin with building and configuring a

(very) basic server.

The Apache Maven build automation tool is used to configure and build the CAS

server (CAS 4.2 and later also support using Gradle). Maven keeps track of the

hundreds of library and object code dependencies associated with the CAS server

and the particular features we have chosen to include, downloads the necessary

files (in the appropriate versions) from public code repositories to a local cache,

and assembles everything into a deployable bundle.

The CAS development team recommends that a WAR overlay project be used to

organize feature selections and user interface design. This approach allows us to

“overlay” our customizations—enabling or disabling features, setting configuration

options, modifying the look and feel, etc.—onto a pre-built “vanilla” web application

server provided by the CAS project itself, without having to download or build those

components that we aren’t using or changing.

We only have to manage the files that contain our customizations; Maven will take

care of everything else.

Create a work area

Because we will be working with more than one WAR overlay project (we will be

creating separate ones later for the management application and the cloud

configuration server), we’ll create a top-level directory to keep them all in. Run the

command

casdev-master# mkdir /opt/workspace

to create a top-level directory on the master build server (casdev-master).

 Note: The directory may be created anywhere on the system; it does not

have to reside under /opt. Furthermore, super-user permissions are not

needed to build and configure the server (although they will be needed to

deploy it).

Building the CAS server PDF last generated: October 18, 2018

Deploying Apereo CAS Page 86

References

• CAS 5: WAR Overlay Installation

• Apache Maven: Overlays

Building the CAS server PDF last generated: October 18, 2018

Deploying Apereo CAS Page 87

https://apereo.github.io/cas/5.2.x/installation/Maven-Overlay-Installation.html
http://maven.apache.org/plugins/maven-war-plugin/overlays.html

Create a Maven WAR overlay project
We will use the Maven WAR overlay template provided by the CAS project as the

starting point for our own project.

Clone the overlay template project

Use Git to clone the overlay template project from GitHub. Run the commands

casdev-master# cd /opt/workspace

casdev-master# git clone https://github.com/apereo/cas-overlay-templa

te.git

Cloning into 'cas-overlay-template'...

remote: Counting objects: 610, done.

remote: Compressing objects: 100% (12/12), done.

remote: Total 610 (delta 7), reused 12 (delta 4), pack-reused 594

Receiving objects: 100% (610/610), 198.63 KiB | 0 bytes/s, done.

Resolving deltas: 100% (298/298), done.

casdev-master#

on the master build server (casdev-master). This will make a local copy of all files

in the template project and store them in a directory called cas-overlay-template .

It will also record the information needed for Git to keep the local copy of the files

synchronized with the copy stored on GitHub, so that corrections and updates

made by the project team can be incorporated into our project from time to time.

 Tip: As an alternative to using Git to clone a repository, GitHub allows the

files in a repository to be downloaded in a Zip archive. However, this method

does not include the metadata that Git needs to keep the local copy in sync

with the master repository.

Switch to the right branch

The GitHub repository for the overlay template project contains multiple versions of

the template; each version is stored as a separate branch of the project. The

master branch usually points to the version of the template used for configuring

and deploying the latest stable release of the CAS server; this is the branch that

will initially be copied to disk by cloning the project. Run the commands

Create a Maven WAR overlay project PDF last generated: October 18, 2018

Deploying Apereo CAS Page 88

casdev-master# cd cas-overlay-template

casdev-master# grep '<cas.version>' pom.xml

<cas.version>5.2.0</cas.version>

casdev-master#

to determine which version of the CAS server the master branch will build. In most

circumstances (including this project), the master branch of the template is the

one you want to use (skip ahead to the next section, Create a local branch (page

90)).

If the master version of the template isn’t for the version of the CAS server you

want to work with (for example, if you want to work with an older version, or

experiment with the version currently under development), run the command

casdev-master# git branch -a

* master

remotes/origin/4.1

remotes/origin/4.2

remotes/origin/5.0.x

remotes/origin/5.1

remotes/origin/5.2

remotes/origin/HEAD -> origin/master

remotes/origin/master

casdev-master#

to obtain a list of available branches, and then run the git checkout command to

switch to that branch. For example, to switch back to the 5.1 branch, run the

command

casdev-master# git checkout 5.1

Branch 5.1 set up to track remote branch 5.1 from origin.

Switched to a new branch '5.1'

casdev-master# grep '<cas.version>' pom.xml

<cas.version>5.1.5</cas.version>

casdev-master#

to switch branches (it’s not necessary to type the remotes/origin/ part of the

branch name). This will download additional/changed files from GitHub to the local

disk. You can switch back to the current version of the template by checking out the

master branch again:

Create a Maven WAR overlay project PDF last generated: October 18, 2018

Deploying Apereo CAS Page 89

casdev-master# git checkout master

Switched to branch 'master'

casdev-master# grep '<cas.version>' pom.xml

<cas.version>5.2.0</cas.version>

casdev-master#

Create a local branch

After you’re on the right branch (for our project, you should be on the master

branch), create a new branch local to your project, which will be used to track all of

your changes and keep them separate from any changes made to the template by

the CAS developers. This will make it easier in the future to merge upstream

changes from the CAS project team into your local template without having to redo

all your changes.

Choose a meaningful name for your branch, but not somthing likely to be

duplicated by the CAS developers—for example, newschool-casdev . Run the

commands

casdev-master# git checkout -b newschool-casdev

Switched to a new branch 'newschool-casdev'

casdev-master#

to create this new branch (replace newschool-casdev with the name of your

branch).

Create a Maven WAR overlay project PDF last generated: October 18, 2018

Deploying Apereo CAS Page 90

Build the default server
The Maven WAR overlay template will, out-of-the-box without any configuration,

build a very basic “default” CAS server. This server doesn’t do much, but it will let

us verify that everything we’ve done up to this point is working correctly and give us

a starting point for further configuration and customization. To build the default

server, run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# ./mvnw clean package

Downloading https://repository.apache.org/content/repositories/releas

es/org/apache/maven/apache-maven/3.5.0/apache-maven-3.5.0-bin.zip

Unzipping /root/.m2/wrapper/dists/apache-maven-3.5.0-bin/766bhoj4b69i

19aqdd66g707g1/apache-maven-3.5.0-bin.zip to /root/.m2/wrapper/dists/

apache-maven-3.5.0-bin/766bhoj4b69i19aqdd66g707g1

Set executable permissions for: /root/.m2/wrapper/dists/apache-mave

n-3.5.0-bin/766bhoj4b69i19aqdd66g707g1/apache-maven-3.5.0/bin/mvn

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(several hundred more lines of diagnostic output... check for errors)

on the master build server (casdev-master). Since this is our first time running

mvnw , several hundred lines of diagnostic output will be printed as the wrapper

downloads and installs Maven (to a cache directory), and as Maven downloads all

the various software components that CAS servers are built from—CAS modules,

Java libraries, third-party packages, etc.—from public software repositories and

stores them in its cache. Once all that preparatory work is finished, the CAS

application itself will be built:

Build the default server PDF last generated: October 18, 2018

Deploying Apereo CAS Page 91

[INFO] Packaging webapp

[INFO] Assembling webapp [cas-overlay] in [/opt/workspace/cas-overla

y-template/target/cas]

[info] Copying manifest...

[INFO] Processing war project

[INFO] Processing overlay [id org.apereo.cas:cas-server-webapp-tomca

t]

[INFO] Webapp assembled in [1086 msecs]

[INFO] Building war: /opt/workspace/cas-overlay-template/target/cas.w

ar

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 02:10 min

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 13M/46M

[INFO]

casdev-master#

The end result of a successful build will be a subdirectory called target that

contains a cas.war file:

casdev-master# ls -asl target

total 77148

0 drwxr-xr-x. 5 root root 61 Mmm dd hh:mm .

4 drwxr-xr-x. 6 root root 4096 Mmm dd hh:mm ..

0 drwxr-xr-x. 5 root root 45 Mmm dd hh:mm cas

89076 -rw-r--r--. 1 root root 91210098 Mmm dd hh:mm cas.war

0 drwxr-xr-x. 2 root root 27 Mmm dd hh:mm maven-archiver

0 drwxr-xr-x. 3 root root 17 Mmm dd hh:mm war

casdev-master#

(ignore the other things in the target directory for now).

Build the default server PDF last generated: October 18, 2018

Deploying Apereo CAS Page 92

Configure server properties
By default, CAS expects to find its configuration files in the operating system

directory /etc/cas . Almost every aspect of CAS server configuration is controlled

via settings stored in the cas.properties file located in the /etc/cas/config

directory. The Maven WAR overlay template provides a “source” for this file (which

makes it easy to manage with Git).

Configure server name information

There are three properties that provide naming information to the CAS server:

cas.server.name The top-level URL (protocol, domain name, and port) of

the web/application server running the CAS server.

cas.server.prefix The URL of the CAS web application on the web/applica-

tion server. This string gets prepended to the various

CAS-specific URLs used by the server.

cas.host.name The name of the CAS host to be appended to ticket IDs.

This value is normally determined automatically, but can

be explicitly set in cases where that value may be incor-

rect (e.g., when hosting CAS servers for multiple do-

mains on the same host).

Edit the file etc/cas/config/cas.properties in the cas-overlay-template

directory on the master build server (casdev-master) and locate the lines for

cas.server.name and cas.server.prefix properties at the top of the file. Set

cas.server.name to the correct value by replacing cas.example.org with the host

name attached to the virtual address on the load balancer’s virtual interface and

removing the port part of the URL (since we’re running on the standard SSL/TLS

port). Then, rather than duplicating that information for cas.server.prefix , use

variable substitution to incorporate the value of cas.server.name :

cas.server.name: https://casdev.newschool.edu

cas.server.prefix: ${cas.server.name}/cas

Since we will (eventually) have multiple servers generating tickets, we want to

leave cas.host.name unset (the default). This will result in each ticket having a

ticket ID that includes the host name of the server that actually created the ticket,

Configure server properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 93

which will make it easier to debug ticket issues. If we were to set cas.host.name ,

all the tickets would have the same “host name” in their ticket IDs, and it would be

impossible to tell which server actually created the ticket.

Configure ticket granting cookie encryption

The CAS server uses a ticket granting cookie in the browser to maintain login state

during single sign-on sessions. A client can present this cookie to CAS in lieu of

primary credentials and, provided it is valid, will be authenticated. The contents of

the cookie should be encrypted to protect them, and when running in a multi-node

environment, all of the nodes must use the same keys. Add the following lines to

etc/cas/config/cas.properties :

cas.tgc.secure: true

cas.tgc.crypto.signing.key:

cas.tgc.crypto.encryption.key:

Now visit the JSON Web Key Generator and click on the “Shared Secret” tab.

Enter 512 into the “Key Size” field, select HS256 from the “Algorithm” drop-down,

and click the “New Key” button. Copy the value of the k parameter from the “Key”

dialog box and enter it as the value for the cas.tgc.crypto.signing.key property.

Then enter 256 into the “Key Size” field, select HS256 from the “Algorithm” drop-

down, and click “New Key” again, and enter that value for the

cas.tgc.crypto.encryption.key property. When finished, you should have

something like this:

cas.tgc.secure: true

cas.tgc.crypto.signing.key: bMpP_eHgIsL1kz_cnxEqYo9Bb384V70

eZIvWctQ5V6xTO4P6wsQjFlglD9OSQNlFdb0mT2Q1E3qXdo05_tzrjQ

cas.tgc.crypto.encryption.key: r88iOMdbRMLOkITV54kax4WgadTdzUY

SBXNhOp_oqS0

Configure Spring Webflow encryption

CAS uses Spring Webflow to manage the authentication sequence, and this also

needs to be encrypted. Add the following lines to etc/cas/config/

cas.properties :

Configure server properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 94

https://mkjwk.org/

cas.webflow.crypto.signing.key:

cas.webflow.crypto.encryption.key:

Using the JSON Web Key Generator again (see above), generate an HS256 key

of size 512 and enter it for the value of the cas.webflow.crypto.signing.key

property.

Unlike the ticket granting cookie encryption key above, the encryption key for

Spring WebFlow is not a JSON Web Key. Rather, it’s a randomly-generated string

of 16 (by default) octets, Base64-encoded. An easy way to generate this key is to

use openssl :

casdev-master# openssl rand -base64 16

Kmj1JJSPOTSiagI4gCxhUA==

casdev-master#

Enter the output from the openssl command for the value of the

cas.webflow.crypto.encryption.key property. When finished, you should have

something like this:

cas.webflow.crypto.signing.key: hGapVlP6pCzIUo_CCboRszQpvWFPazm

yuWsBUOoWYqUQqMKw55al5c_EGH6VBtjpIVUqEAXcvLQjQ8HaVBEmDw

cas.webflow.crypto.encryption.key: Kmj1JJSPOTSiagI4gCxhUA==

 Tip: The online JSON Web Key Generator is provided by the Mitre

Corporation and the MIT Kerberos and Internet Trust Consortium, and is

simply a web-based interface to the json-web-key-generator project, also

provided by Mitre/MIT. The project can be cloned from GitHub and built locally

if you don’t trust the online generator, or you can download and use a pre-built

copy from the CAS project by running the command

curl -LO https://raw.githubusercontent.com/apereo/cas/master/etc/

jwk-gen.jar

Keys can then be generated using the command

java -jar jwk-gen.jar -t oct -s [size]

Configure server properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 95

https://mkjwk.org/
https://github.com/mitreid-connect/json-web-key-generator

References

• CAS 5: SSO Session Cookie

• CAS 5: Webflow Session

Configure server properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 96

https://apereo.github.io/cas/5.2.x/installation/Configuring-SSO-Session-Cookie.html
https://apereo.github.io/cas/5.2.x/installation/Webflow-Customization-Sessions.html

Configure logging settings
The Log4J configuration file included with the Maven WAR overlay template will

attempt to write the CAS server log files (not the Tomcat log files) to the root of the

CAS web application directory. However, since part of our Tomcat hardening

procedure (page 39) includes removing write permission to this directory for the

tomcat user, this will not work (and it’s not a very good place for them anyway).

So, just as we moved Tomcat’s log files to /var/log/tomcat , we will move the

CAS server’s log files to /var/log/cas .

Edit the file etc/cas/config/log4j2.xml in the cas-overlay-template directory

on the master build server (casdev-master) and find the line that defines the

cas.log.dir property (around line 9) and change its value to /var/log/cas , like

this:

<Property name="cas.log.dir" >/var/log/cas</Property>

Then create the /var/log/cas directory and set the ownership and permissions

appropriately:

casdev-master# mkdir /var/log/cas

casdev-master# chown tomcat.tomcat /var/log/cas

casdev-master# chmod 750 /var/log/cas

Don’t forget to run the three commands above on the individual CAS servers as

well.

Adjust the log file rotation strategy (optional)

By default, the CAS log files will be rotated whenever their size reaches 10MB. On

a busy server, this can result in numerous log files being created in a single day,

making it more difficult to find particular events in the logs. To switch to a time-

based rotation strategy in which the log files are rotated once a day, edit the etc/

cas/config/log4j2.xml file again, and make the following changes:

1. In the RollingFile configuration for cas.log (around line 17), change

the variable part of the filePattern attribute from %d{yyyy-MM-dd-HH}-

%i.log to %d{yyyy-MM-dd}.log (remove the hour and sequence number

from the pattern).

2. Remove (or comment out) the OnStartupTriggeringPolicy element

Configure logging settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 97

(around line 21).

3. Remove (or comment out) the SizeBasedTriggeringPolicy element

(around line 22).

4. Add the attributes interval="1" modulate="true" to the

TimeBasedTriggeringPolicy element (around line 23).

The end result should look like this:

<RollingFile name="file" fileName="${sys:cas.log.dir}/cas.log" appen

d="true"

filePattern="${sys:cas.log.dir}/cas-%d{yyyy-MM-dd}.log">

<PatternLayout pattern="%d %p [%c] - <%m>%n"/>

<Policies>

<TimeBasedTriggeringPolicy interval="1" modulate="true"/>

</Policies>

</RollingFile>

Repeat the above changes for cas_audit.log (starting around line 26) and

perfStats.log (starting around line 36).

 Warning: The configuration above assumes that there will be one, and only

one, log file for each day. If a file with today’s name already exists when

Tomcat decides to rotate, the existing file will be overwritten.

If you decide to keep the OnStartupTriggeringPolicy (which rotates the file

whenever Tomcat starts) or the SizeBasedTriggeringPolicy (which rotates the

file when it reaches a specified size (10MB by default)), or add some other

policy, you should make sure the filePattern you use generates unique

names if called more than once a day (e.g., by keeping the %i sequence

number) or you will lose log data.

References

• CAS 5: Logging

Configure logging settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 98

https://apereo.github.io/cas/5.2.x/installation/Logging.html

Install and test the CAS application
To deploy the CAS application, we have to copy the application we just built with

Maven into Tomcat’s webapps directory and we have to copy the contents of the

etc/cas directory to /etc/cas .

Create a distribution tar file

As explained in the section on hardening the Tomcat installation (page 39), web

applications should be deployed as exploded directories rather than as WAR files,

all files should be owned by user root and group tomcat , and file permissions

should be set to owner read/write, group read only, and world none. To make it

easier to accomplish all that, we will assemble everything into a single tar archive

that can be copied to each CAS server and extracted. Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# tar czf /tmp/cassrv-files.tgz --owner=root --group=tom

cat --mode=g-w,o-rwx etc/cas -C target cas --exclude cas/META-INF

to create the tar archive in /tmp/cassrv-files.tgz . The --owner , --group ,

and --mode options ensure that the files will have the correct owner, group, and

permission settings when extracted. Since we will be running the above commands

many times as we add more functionality to the server, it makes sense to put the

above commands into a shell script (called, for example, cassrv-tarball.sh) like

this:

#!/bin/sh

cd /opt/workspace/cas-overlay-template

tar czf /tmp/cassrv-files.tgz --owner=root --group=tomcat --mod

e=g-w,o-rwx \

etc/cas -C target cas --exclude cas/META-INF

echo ""

ls -asl /tmp/cassrv-files.tgz

exit 0

Install and test the CAS application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 99

Create an installation shell script

Because web application auto-deployment has been disabled as part of Tomcat

server hardening, Tomcat has to be restarted when the application is updated. And

to ensure that no out-of-date artifacts are left behind when installing a new version

of the application, it’s usually best to delete the old application directory rather than

overwrite it. To make all this easier to do on multiple servers, all the commands can

be collected into a shell script (called, for example, /opt/scripts/cassrv-

install.sh) like this:

#!/bin/sh

echo "--- Installing on `hostname`"

umask 027

if [-f /tmp/cassrv-files.tgz]

then

systemctl stop tomcat

cd /

rm -rf etc/cas/config

tar xzf /tmp/cassrv-files.tgz etc/cas

cd /opt/tomcat/latest/

rm -rf webapps/cas work/Catalina/localhost/cas

cd /opt/tomcat/latest/webapps

tar xzf /tmp/cassrv-files.tgz cas

systemctl start tomcat

rm -f /tmp/cassrv-files.tgz /tmp/cassrv-install.sh

echo "Installation complete."

else

echo "Cannot find /tmp/cassrv-files.tgz; nothing installed."

exit 1

fi

exit 0

Install and test the CAS application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 100

This script will shut down Tomcat, delete the old contents of /etc/cas and extract

a new set of files from the tar archive, delete the old copy of the application (and

any associated runtime files) and extract a new copy from the tar archive, and

then restart Tomcat.

Install and test on the master build server

Before distributing everything to the CAS servers, it should be tested on the master

build server (casdev-master) to ensure that everything is working properly. To do

this, run the installation script created above:

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the Tomcat log file (/var/log/tomcat/catalina.yyyy-mm-

dd.out) for errors. All log messages in a successful start should be at log level

INFO . If any messages are at log level WARNING or SEVERE (except for the

“acceptable” warnings described in the Test the tomcat installation (page 59)

section), then something is wrong and needs to be corrected.

There should be a line for the successful deployment of the ROOT web application,

another for the successful deployment of the CAS web application, and finally a

line for successful server startup:

DD-MMM-YYYY HH:MM:SS.sss INFO [localhost-startStop-1] org.apache.cata

lina.startup.HostConfig.deployDirectory Deployment of web applicatio

n directory [/var/lib/tomcat/ROOT] has finished in N ms

...

DD-MMM-YYYY HH:MM:SS.sss INFO [localhost-startStop-1] org.apache.cata

lina.startup.HostConfig.deployDirectory Deployment of web applicatio

n directory [/var/lib/tomcat/cas] has finished in N ms

...

DD-MMM-YYYY HH:MM:SS.sss INFO [main] org.apache.catalina.startup.Cata

lina.start Server startup in N ms

Then review the contents of the CAS log file (/var/log/cas/cas.log) for errors.

For the most part everything should be at log level INFO , but there are a few WARN

messages that will appear:

Install and test the CAS application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 101

YYYY-MM-DD HH:MM:SS,sss WARN [org.apereo.cas.config.CasCoreTicketsCon

figuration] - <Runtime memory is used as the persistence storage for

retrieving and managing tickets. Tickets that are issued during runti

me will be LOST upon container restarts. This MAY impact SSO function

ality.>

YYYY-MM-DD HH:MM:SS,sss WARN [org.apereo.cas.config.support.authentic

ation.AcceptUsersAuthenticationEventExecutionPlanConfiguration] - <>

YYYY-MM-DD HH:MM:SS,sss WARN [org.apereo.cas.config.support.authentic

ation.AcceptUsersAuthenticationEventExecutionPlanConfiguration] - <

____ _____ ___ ____ _

/ ___| |_ _| / _ \ | _ \ | |

___ \ | | | | | | | |_) | | |

___) | | | | |_| | | __/ |_|

|____/ |_| ___/ |_| (_)

CAS is configured to accept a static list of credentials for authenti

cation. While this is generally useful for demo purposes, it is STRON

GLY recommended that you DISABLE this authentication method (by SETTI

NG 'cas.authn.accept.users' to a blank value) and switch to a mode th

at is more suitable for production.>

YYYY-MM-DD HH:MM:SS,sss WARN [org.apereo.cas.config.support.authentic

ation.AcceptUsersAuthenticationEventExecutionPlanConfiguration] - <>

YYYY-MM-DD HH:MM:SS,sss WARN [org.apereo.cas.config.CasCoreServicesCo

nfiguration] - <Runtime memory is used as the persistence storage fo

r retrieving and persisting service definitions. Changes that are mad

e to service definitions during runtime WILL be LOST upon container r

estarts.>

These are to be expected (and will be addressed in later steps of the deployment).

If there are any other warnings or errors however, they should be corrected before

proceeding.

Once everything has started, open up a web browser and enter the URL of the

CAS application on the master build server:

https://casdev-master.newschool.edu:8443/cas/login

Expect the browser to complain about the TLS/SSL certificate because the host

name of the server (casdev-master.newschool.edu) does not match the name in

the certificate (casdev.newschool.edu). Click through the prompts to visit the site

anyway, and you should be presented with a login page that looks something like

this:

Install and test the CAS application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 102

Figure 5. The basic CAS server login page

Since we have not configured the server with any authentication sources (yet), it

comes with a set of built-in credentials for demonstration purposes. Log in using

the username casuser and the password Mellon and you should then see a

“successful login” page something like this:

Install and test the CAS application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 103

Figure 6. The CAS login success page

If this isn’t what displays, check the various log files in /var/log/tomcat and

/var/log/cas for errors.

Install and test on the CAS servers

Once CAS is running correctly on the master build server, it can be copied to the

CAS servers using the tar archive and installation script created above. This can

be done manually, or with a shell loop as shown below:

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Once all the servers have been updated, open up a web browser and enter the

URL assigned to the load balancer’s virtual interface:

https://casdev.newschool.edu/cas/login

Verify that the login page appears, and then enter the username and password

(casuser / Mellon) and confirm that everything is working as it did on the master

build server.

Define a CAS-specific service monitor on the load

balancers

In Configure the load balancers (page 66), we defined a monitor for the server pool

that connects to each server via HTTPS on port 8443 every 5 seconds and issues

a GET / HTTP request. While this is sufficient to check whether or not the server

itself is up and Tomcat is running, it’s not sufficient to check that the CAS web

Install and test the CAS application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 104

application is running. To do this, define a new monitor that issues a GET /cas/

login request and checks for Login - CAS (part of the text on the login page) to

be returned instead:

ltm monitor https /Common/casdev_https_8443_monitor {

adaptive disabled

cipherlist DEFAULT:+SHA:+3DES:+kEDH

compatibility enabled

defaults-from /Common/https

description "Cas Dev Application HTTPS Monitor"

destination *:8443

interval 5

is-dscp 0

recv "Login - CAS"

recv-disable none

send "GET /cas/login\\r\\n"

time-until-up 0

timeout 16

}

And modify the pool definition to use that monitor instead:

ltm pool /Common/casdev_pool {

description "CAS Development 8443 Pool"

members {

/Common/casdev-srv01:8443 {

address 192.168.100.101

}

/Common/casdev-srv02:8443 {

address 192.168.100.102

}

/Common/casdev-srv03:8443 {

address 192.168.100.103

}

}

monitor /Common/casdev_https_8443_monitor

}

Install and test the CAS application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 105

Commit changes to Git
Before moving on to the next phase of configuration, commit the changes made so

far to log4j2.xml and cas.properties to Git to make them easier to keep track

of (and to enable reverting to earlier configurations easier). Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git add etc/cas/config/log4j2.xml

casdev-master# git commit

on the master build server (casdev-master). The git commit command will bring

up a text editor so you can describe the commit. Enter something like:

Basic server configuration:

1. Set server host name and url information

2. Configure TGC and webflow encryption

3. Put log files into /var/log/cas

4. Change log file rotation scheme

Then save and exit the editor, and Git will finish its work:

[newschool-casdev 63e0694] asic server configuration: 1. Set server

host name and url information 2. Configure TGC and webflow encryptio

n 3. Put log files into /var/log/cas 4. Change log file rotation sc

heme

2 files changed, 42 insertions(+), 17 deletions(-)

rewrite etc/cas/config/cas.properties (75%)

casdev-master#

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 106

Adding a service registry

Summary: A service registry must be added to the server so that

client services can be declared and configured.

The CAS server includes a service management facility that allows CAS server

administrators to declare and configure which services (CAS clients) may use the

server, and how they may use it. The core component of the service management

facility is the service registry that stores information about registered services

including how the services must authenticate users, which users may access the

service and under what conditions, data about authorized users the services may

access, and so on.

The basic CAS server built in the previous section does not include a service

registry (there is a line in cas.properties to enable a built-in registry, but it is

commented out). Before we can build and use any test clients, it’s necessary to

add a service registry to the server. For our initial testing, we will add a simple

registry that uses JSON files to describe services; we will replace this with a more

robust registry when we configure the servers for high availability (page 321).

References

• CAS 5: Service Management

Adding a service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 107

https://apereo.github.io/cas/5.2.x/installation/Service-Management.html

Add the feature and rebuild the server
Adding the JSON service registry feature requires adding a new dependency to the

Maven project object model and rebuilding the server.

Add the JSON service registry to the project object model

To add JSON service registry support to the CAS server, edit the file pom.xml in

the cas-overlay-template directory on the master build server (casdev-master)

and locate the dependencies section (around line 69), which should look

something like this:

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

</dependencies>

Insert a new dependency for the JSON service registry:

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Add the feature and rebuild the server PDF last generated: October 18, 2018

Deploying Apereo CAS Page 108

Rebuild the server

Run Maven again to rebuild the server according to the new model:

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output...check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 01:07 min

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 25M/70M

[INFO]

casdev-master#

References

• CAS 5: JSON Service Registry

Add the feature and rebuild the server PDF last generated: October 18, 2018

Deploying Apereo CAS Page 109

https://apereo.github.io/cas/5.2.x/installation/JSON-Service-Management.html

Configure the service registry
Configuring the service registry requires defining the registry location in

cas.properties and then creating service definition files for each service.

Define the service registry in cas.properties

Edit the file etc/cas/cas.properties in the cas-overlay-template directory on

the master build server (casdev-master) and locate the commented-out definition

of the service registry location (around line 7):

cas.serviceRegistry.json.location: classpath:/services

Uncomment the line and change the property’s value to file:/etc/cas/services :

cas.serviceRegistry.json.location: file:/etc/cas/services

Create the service registry directory

Create the directory etc/cas/services in the cas-overlay-template directory on

the master build server.

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# mkdir etc/cas/services

Create a service definition file

For simplicity (and to avoid worrying about the details of the service registry for the

moment), create a “wildcard” service definition that will allow any HTTPS- or

IMAPS-based service to make use of the CAS server. Create a file in the etc/cas/

services directory on the master build server with the following contents:

Configure the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 110

{

/*

* Wildcard service definition that applies to any https or imaps u

rl.

* Do not use this definition in a production environment.

*/

"@class" : "org.apereo.cas.services.RegexRegisteredServi

ce",

"serviceId" : "^(https|imaps)://.*",

"name" : "HTTPS and IMAPS wildcard",

"id" : 1503925297,

"evaluationOrder" : 99999

}

The CAS documentation recommends the following naming convention for JSON

service definition files:

JSON filename = serviceName + "-" + serviceNumericId + ".json"

Therefore, the filename for the wildcard service definition above should be

HTTPSandIMAPSwildcard-1503925297.json .

The CAS server uses Human JSON (Hjson), which relaxes JSON’s strict syntax

rules and also allows for the use of comments, to make it easier to write JSON

service definitions by hand. (Later, we will build the management webapp (page

236) to maintain these files for us). The use of Hjson format for writing service

definitions is optional; traditional JSON syntax is also supported.

The complete list of service definition properties is provided in the Service

Management chapter of the CAS documentation, but the “interesting” fields in the

definition above are:

serviceId A regular expression describing the URL(s) where a service

or services are located. Care should be taken to avoid pat-

terns that match more than just the desired URL(s), as this

can create security vulnerabilities.

name A name for the service. Note that because the service defi-

nition filename is created based on this name (see above),

the value of this field should never contain characters that

are not allowed in filenames .

Configure the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 111

http://hjson.org/
https://en.wikipedia.org/wiki/Filename#Reserved_characters_and_words
https://en.wikipedia.org/wiki/Filename#Reserved_characters_and_words

id Unique numeric identifier for the service definition. An easy

way to ensure that these identifiers are unique is to use the

date and time the service definition was created. This can

be represented as YYYYMMDDhhmmss or, for a more “anony-

mous” representation, as a timestamp (number of seconds

since the epoch), which can be obtained with the command

date +%s .

evaluationOrder A value that determines the relative evaluation order of reg-

istered services (lower values come before higher values).

This is especially important when more than one

serviceId expression can match the same service;

evalutionOrder deterines which expression is evaluated

first.

References

• CAS 5: Service Management

• CAS 5: JSON Service Registry

Configure the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 112

https://apereo.github.io/cas/5.2.x/installation/Service-Management.html
https://apereo.github.io/cas/5.2.x/installation/JSON-Service-Management.html

Install and test the service registry
Before the service registry can be used, the rebuilt CAS application and the

updated configuration files must be installed and tested.

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS application and configuration files on the master build server

(casdev-master):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

 Note: You may want to edit cassrv-install.sh and change the line that

reads rm -rf etc/cas/config (around line 10) to read rm -rf etc/cas/config

etc/cas/services instead, to ensure that repeated installations do not leave

any old service definitions lying around.

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the scripts created earlier (page 99):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Install and test the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 113

Install and test the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 114

Commit changes to Git
Before moving on to building the CAS client, commit the changes made to

pom.xml and cas.properties , as well as the new etc/cas/services directory, to

Git to make them easier to keep track of (and to enable reverting to earlier

configurations easier). Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git add etc/cas/services

casdev-master# git add pom.xml

casdev-master# git commit -m "Added JSON service registry"

[newschool-casdev 5011d64] Added JSON service registry

3 files changed, 17 insertions(+), 1 deletion(-)

create mode 100644 etc/cas/services/wildcard.json

casdev-master#

on the master build server (casdev-master). The git commit command will not

bring up a text editor as it did last time, since we provided the commit message on

the command line.

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 115

Building the CAS client

Summary: To facilitate development and testing, a client application

that interacts with the CAS server is needed.

Now that a basic CAS server is up and running, we can build a client application to

talk to it.

Our CAS client will be an Apache HTTPD web server that offers both public

content that anyone can access, and “secure” content that can only be accessed

by authenticated and authorized users. The CAS server will be used to perform

those authentication and authorization decisions.

Building the CAS client PDF last generated: October 18, 2018

Deploying Apereo CAS Page 116

Install the mod_auth_cas plugin
The mod_auth_cas plugin allows an Apache web server to interact with a CAS

server via the CAS protocol. Red Hat does not offer this plugin for installation via

yum however, so it must be downloaded and built from source code. We will build

the plugin on the master build server (casdev-master) where the compilers and

other development tools have been installed, and then copy it to the client server

(casdev-casapp) for installation and use.

Install pre-requisites

The mod_auth_cas plugin build process depends on the presence of development

libraries and header files from other packages. Run the commands

casdev-master# yum -y install httpd-devel

casdev-master# yum -y install openssl-devel

casdev-master# yum -y install libcurl-devel

to install them.

Clone the mod_auth_cas project

Use Git to clone the mod_auth_cas project from GitHub. Run the commands

casdev-master# cd /opt/workspace

casdev-master# git clone https://github.com/apereo/mod_auth_cas.git

Cloning into 'mod_auth_cas'...

remote: Counting objects: 1766, done.

remote: Total 1766 (delta 0), reused 0 (delta 0), pack-reused 1766

Receiving objects: 100% (1766/1766), 1.47 MiB | 0 bytes/s, done.

Resolving deltas: 100% (1060/1060), done.

casdev-master#

This will make a local copy of all files in the project and store them in a directory

called mod_auth_cas . It will also record the information needed for Git to keep the

local copy of the files synchronized with the copy stored on GitHub, so that

corrections and updates made by the project team can be incorporated.

 Tip: As an alternative to using Git to clone a repository, GitHub allows the

Install the mod_auth_cas plugin PDF last generated: October 18, 2018

Deploying Apereo CAS Page 117

files in a repository to be downloaded in a Zip archive. However, this method

does not include the metadata that Git needs to keep the local copy in sync

with the master repository.

Build the plugin

Run the commands

casdev-master# cd /opt/workspace/mod_auth_cas

casdev-master# autoreconf -ivf

(lots of output... check for errors)

casdev-master# ./configure

(lots of output... check for errors)

casdev-master# make

(lots of output... check for errors)

casdev-master#

to build the plugin.

Install the plugin on the client server

An Apache HTTPD plugin is really just a dynamic shared library that can be loaded

at runtime. Run the commands

casdev-master# scp src/.libs/mod_auth_cas.so casdev-casapp:/etc/http

d/modules/mod_auth_cas.so

mod_auth_cas.so 100% 241KB 240.7KB/

s 00:00

casdev-master# ssh casdev-casapp "chown root.root /etc/httpd/modules/

mod_auth_cas.so; chmod 755 /etc/httpd/modules/mod_auth_cas.so"

casdev-master#

to copy the mod_auth_cas module to the appropriate location on the server where

Apache HTTP is installed (casdev-casapp).

References

• GitHub repo for mod_auth_cas

Install the mod_auth_cas plugin PDF last generated: October 18, 2018

Deploying Apereo CAS Page 118

https://github.com/apereo/mod_auth_cas
https://github.com/apereo/mod_auth_cas

Configure HTTPD to use CAS
Now that the mod_auth_cas plugin has been built and installed, it can be

configured, and some web content can be created to secure with it.

 Note: The steps in this section should be performed on the client server

(casdev-casapp), not the master build server (casdev-master).

Configure mod_auth_cas settings

Create the file /etc/httpd/conf.d/cas.conf with the following contents to

configure the mod_auth_cas module:

LoadModule auth_cas_module modules/mod_auth_cas.so

<Directory "/var/www/html/secured-by-cas">

<IfModule mod_auth_cas.c>

AuthType CAS

</IfModule>

Require valid-user

</Directory>

<IfModule mod_auth_cas.c>

CASLoginUrl https://casdev.newschool.edu/cas/login

CASValidateUrl https://casdev.newschool.edu/cas/serviceVal

idate

CASCookiePath /var/cache/httpd/mod_auth_cas/

CASSSOEnabled On

CASDebug Off

</IfModule>

If the CAS server is using a self-signed TLS/SSL certificate, the following line will

also be needed:

CASCertificatePath /etc/pki/tls/certs/casdev.crt

and a copy of the public certificate should be installed in /etc/pki/tls/certs/

casdev.crt .

Configure HTTPD to use CAS PDF last generated: October 18, 2018

Deploying Apereo CAS Page 119

Create the cookie cache directory

Run the commands

casdev-casapp# mkdir /var/cache/httpd/mod_auth_cas

casdev-casapp# chown apache.apache /var/cache/httpd/mod_auth_cas

casdev-casapp# chmod 700 /var/cache/httpd/mod_auth_cas

to create the directory specified in the CASCookiePath directive above.

Restart HTTPD

Run the command

casdev-casapp# systemctl restart httpd

to restart the HTTPD server with the new configuration. Check the log files in

/var/log/httpd for errors.

Create example content

Edit the file /var/www/html/index.php and replace the call to phpinfo() with a

link to another file, like this:

Configure HTTPD to use CAS PDF last generated: October 18, 2018

Deploying Apereo CAS Page 120

<!DOCTYPE html>

<html lang="en">

<head>

<title>Hello, World!</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scal

e=1">

<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/

3.3.7/css/bootstrap.min.css">

</head>

<body>

<div class="container">

<h1>Hello, World!</h1>

<p><big>The quick brown fox jumped over the lazy dogs.</bi

g></p>

<p><big>Click here fo

r some secure content.</big></p>

</div>

</body>

</html>

Then create a directory, /var/www/html/secured-by-cas , and create the file /var/

www/html/secured-by-cas/index.php with the following contents:

Configure HTTPD to use CAS PDF last generated: October 18, 2018

Deploying Apereo CAS Page 121

<!DOCTYPE html>

<html lang="en">

<head>

<title>Hello, World!</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scal

e=1">

<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/

3.3.7/css/bootstrap.min.css">

</head>

<body>

<div class="container">

<h1>Secured Content</h1>

<p><big>This is some secure content. You should not be able to

see it until you have entered your username

and password.</big></p>

<h2>Attributes Returned by CAS</h2>

<?php

echo "<pre>";

if (array_key_exists('REMOTE_USER', $_SERVER)) {

echo "REMOTE_USER = " . $_SERVER['REMOTE_USER'] . "
";

}

$headers = getallheaders();

foreach ($headers as $key => $value) {

if (strpos($key, 'CAS_') === 0) {

echo substr($key, 4) . " = " . $value . "
";

}

}

echo "</pre>";

?>

</div>

</body>

</html>

The PHP code here will display environment variables and HTTP headers that are

used by mod_auth_cas to pass attributes returned by the CAS server along to the

web application.

Configure HTTPD to use CAS PDF last generated: October 18, 2018

Deploying Apereo CAS Page 122

Test the application
Now the use of CAS to protect the “secure” content created in the previous section

can be tested by accessing the “public” part of the web site, and then clicking on

the link to the “secure” section. At that point, the browser should be redirected to

the CAS server, where a username and password can be entered. Provided that

the username and password are correct, the secure content will be displayed.

Because both the load balancer and the CAS server use cookies, it’s usually best

to perform testing with an “incognito” or “private browsing” instance of the web

browser that deletes all cookies each time it is closed.

Shut down all but one of the pool servers

Operating CAS with a pool of servers instead of a single server requires special

configuration. Because that configuration hasn’t been completed yet, testing must

be performed against a single server. Therefore, the other servers in the pool

should be shut down so that the load balancer will direct all traffic to that single

server. Run the command

systemctl stop tomcat

on all but one of the CAS servers (casdev-srvXX) to temporarily take those

servers out of the pool.

Access the public site

Open up a web browser (in “incognito” or “private browsing” mode) and enter the

URL of the CAS-enabled web site:

https://casdev-casapp.newschool.edu/

The contents of /var/www/html/index.php should be displayed, looking

something like this:

Test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 123

Figure 7. The "public" site

Access the secure area

Click on the “here” link to access the secure content, and you will be redirected to

the CAS server login page, as shown below:

Test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 124

Figure 8. The CAS login page

Note that the contents of the name field from the service registry are displayed in

the middle of the right-hand column. Enter a valid username and password

(casuser / Mellon) and, upon successful authentication, the contents of /var/

www/html/secured-by-cas/index.php will be displayed:

Test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 125

Figure 9. The "secure" content

Note that the value shown for the REMOTE_USER variable is the username that was

entered on the CAS login page (casuser).

Restart the pool servers

One testing is complete, run the command

systemctl start tomcat

on each of the pool servers shut down previously.

Test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 126

Adding LDAP support

Summary: Multiple LDAP directories will be used to authenticate

users and to collect user attributes (ID numbers, names, group

memberships, etc.) and make them available to client applications.

Although the default user credentials (casuser / Mellon) provided by the CAS

server are useful for testing, we really want users to enter their own individual

usernames and passwords. For the CAS server to support that in our environment,

it has to be able to authenticate users against one or more LDAP directories. Many

services that we use also require other information about users besides their

username and password, such as their first and last name, student or employee ID

numbers, group memberships, and so on. We store this information in LDAP as

well, so the CAS server has to know how to retrieve it and send it to the client

service.

In this section, we will add LDAP support to the CAS server to enable it to do three

things:

1. Authentication. Prompt the user for his or her username and password,

and validate that the provided password is indeed correct. At this stage,

the user account is also checked to ensure that it is not suspended or

disabled. At the conclusion of the authentication process, the CAS server

will have identified a security principal. A CAS principal contains a unique

identifier by which the authenticated user will be known to all requesting

services. A principal also contains optional attributes that may be released

to services to support authorization and personalization.

2. Attribute resolution. Specific attributes about the principal are collected

from one or more sources and combined into a single set of attributes

using any of several different combining strategies (merging, replacing,

adding, etc.).

3. Attribute release. The process of defining how attributes are selected and

provided to a given application in the final CAS response.

References

• CAS 5: Configuring Authentication Components

• CAS 5: Configuring Principal Resolution

• CAS 5: Attribute Resolution

• CAS 5: Attribute Release

Adding LDAP support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 127

https://apereo.github.io/cas/5.2.x/installation/Configuring-Authentication-Components.html
https://apereo.github.io/cas/5.2.x/installation/Configuring-Principal-Resolution.html
https://apereo.github.io/cas/5.2.x/integration/Attribute-Resolution.html
https://apereo.github.io/cas/5.2.x/integration/Attribute-Release.html

Configuring LDAP authentication

Summary: The LDAP module will be added to the CAS server to

enable it to authenticate users against LDAP directories

The CAS server’s LDAP integration enables the server to authenticate users

against LDAP directories such as Active Directory and the LDAP directory included

with Ellucian’s Luminis user portal.

Add the LDAP dependency to the project object model

To add LDAP support to the CAS server, edit the file pom.xml in the cas-overlay-

template directory on the master build server (casdev-master) and locate the

dependencies section (around line 69), which should look something like this:

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Insert a new dependency for the LDAP module:

Configuring LDAP authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 128

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

</dependencies>

This will instruct Maven to download the appropriate code modules and build them

into the server.

Rebuild the server

Run Maven again to rebuild the server according to the new model:

Configuring LDAP authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 129

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 9.368 s

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 27M/78M

[INFO]

casdev-master#

Disable use of built-in credentials

Until they’re disabled, CAS will use the built-in username and password (casuser /

Mellon) regardless of what other authentication methods have been configured.

To disable the built-in credentials, add the following line to etc/cas/config/

cas.properties in the cas-overlay-template directory on the master build server

(casdev-master):

cas.authn.accept.users:

Commit changes to Git

Commit the changes made to pom.xml and cas.properties to Git to make them

easier to keep track of (and to enable reverting to earlier configurations easier).

Run the commands

Configuring LDAP authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 130

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git add pom.xml

casdev-master# git commit -m "Added LDAP support"

[newschool-casdev 2dd8813] Added LDAP support

2 files changed, 10 insertions(+)

casdev-master#

on the master build server (casdev-master).

References

• CAS 5: LDAP Authentication

• CAS 5: Configuration Properties: LDAP Authentication

Configuring LDAP authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 131

https://apereo.github.io/cas/5.2.x/installation/LDAP-Authentication.html
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#ldap-authentication-1

Configure Active Directory authentication
properties
Although CAS offers several dozen properties for controlling how LDAP

authentication is performed, most of them come with reasonable defaults and do

not have to be configured in normal circumstances. The complete list of properties

can be found in the CAS documentation.

Add the following settings to etc/cas/config/cas.properties in the cas-

overlay-template directory on the master build server (casdev-master) to

authenticate against Active Directory:

cas.authn.ldap[0].order: 0

cas.authn.ldap[0].name: Active Directory

cas.authn.ldap[0].type: AD

cas.authn.ldap[0].ldapUrl: ldaps://zuul.newschool.edu

cas.authn.ldap[0].validatePeriod: 270

cas.authn.ldap[0].poolPassivator: NONE

cas.authn.ldap[0].userFilter: sAMAccountName={user}

cas.authn.ldap[0].baseDn: ou=TNSUsers,dc=tns,dc=newscho

ol,dc=edu

cas.authn.ldap[0].dnFormat: cn=%s,ou=TNSUsers,dc=tns,dc=n

ewschool,dc=edu

The [0] in the property names indicates that this is the first LDAP source to be

configured. Additional sources will be [1] , [2] , etc. (more on this in Configure

Luminis LDAP authentication properties (page 136)).

The properties used above are:

order When multiple authentication sources are configured, the

CAS server looks for the user in one source after another

until the user is found, and then the authentication is per-

formed against that source (where it either succeeds or

fails). This property influences the order in which the source

is evaluated (if not specified, sources are evaluated in the

order they are defined).

name The name of the source. This is used when writing log file

messages.

type The type of authenticator to use. This should be AD for Ac-

tive Directory.

Configure Active Directory authentication properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 132

ldapUrl The URL of the Active Directory server. In our case, we use

the URL of the virtual host on the F5 load balancer, which

has multiple Active Directory servers behind it.

validatePeriod The LDAP module periodically validates the connections in

its connection pool. But the default setting for how often to

do this (600 seconds) is longer than the idle timeout on the

F5 load balancer that fronts the LDAP servers (300 sec-

onds), which results in lots of warning messages being writ-

ten to the CAS log file (one per connection every ten min-

utes). Reducing the validation period to something shorter

than the load balancer idle timeout eliminates these mes-

sages.

poolPassivator Passivators help manage LDAP connection pools. Howev-

er, the default value for this property, BIND , does not work

with the AD authenticator type, because there is no bind

credential to use (the authenticator binds as the user being

authenticated). Therefore, tihs setting is needed to disable

the passivator.

userFilter The LDAP filter to select the user from the directory. Active

Directory typically searches on the sAMAccountName at-

tribute. The {user} pattern will be replaced with the user-

name string entered by the user.

baseDn The base DN to search against when retrieving attributes.

The “usual” value for this is more like

ou=Users,dc=example,dc=org , but for historical reasons

we keep our users in a different OU.

dnFormat A format string to generate the user DN to be authenticat-

ed. In the string, %s will be replaced with the username en-

tered on the login form. The “usual” value of this string is

something more like uid=%s,ou=Users,dc=example,dc=org ,

but we do not use the uid attribute in our Active Directory

schema, we use cn instead.

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS application and configuration files on the master build server

(casdev-master):

Configure Active Directory authentication properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 133

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#passivators

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Once everything has started, open up a web browser and enter the URL of the

CAS application on the master build server (https://casdev-

master.newschool.edu:8443/cas/login), and try to log in using an Active Directory

username and password. The “Log In Successful” page should appear. If it doesn’t,

consult /var/log/cas/cas.log for errors.

It may help to enable debugging on the LDAP module by changing the

org.ldaptive logging level to debug around line 95 in /etc/cas/config/

log4j2.xml :

<AsyncLogger name="org.ldaptive" level="debug" />

and restarting Tomcat.

Install and test on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the scripts created earlier (page 99):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

and tested using the URL of the load balancer’s virtual interface

(https://casdev.newschool.edu/cas/login).

Configure Active Directory authentication properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 134

Commit changes to Git

Before moving on to the next phase of configuration, commit the changes made to

pom.xml and cas.properties to Git:

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git commit -m "Added Active Directory authentication"

[newschool-casdev 584aa7c] Added Active Directory authentication

1 file changed, 16 insertions(+)

casdev-master#

References

• CAS 5: Configuration Properties: LDAP Authentication

Configure Active Directory authentication properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 135

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#ldap-authentication-1

Configure Luminis LDAP authentication
properties
CAS allows multiple LDAP directories to be queried when authenticating users.

Because our Active Directory does not include all our users, we also need to

authenticate against the LDAP server included with Ellucian’s Luminis user portal.

Add the following settings to etc/cas/config/cas.properties , below the Active

Directory settings added in the previous section, to authenticate against Luminis

LDAP:

cas.authn.ldap[1].order: 1

cas.authn.ldap[1].name: Luminis LDAP

cas.authn.ldap[1].type: AUTHENTICATED

cas.authn.ldap[1].ldapUrl: ldaps://janus.newschool.edu

cas.authn.ldap[1].validatePeriod: 270

cas.authn.ldap[1].userFilter: uid={user}

cas.authn.ldap[1].baseDn: ou=People,o=cp

cas.authn.ldap[1].bindDn: uid=ldap_ssotest,ou=Peopl

e,o=cp

cas.authn.ldap[1].bindCredential: xxxxxxxxxxxx

The [1] in the property names indicates that this is the second LDAP source to be

configured (Active Directory was [0]).

The properties used above are:

order When multiple authentication sources are configured, the

CAS server looks for the user in one source after another

until the user is found, and then the authentication is per-

formed against that source (where it either succeeds or

fails). This property influences the order in which the source

is evaluated (if not specified, sources are evaluated in the

order they are defined).

name The name of the source. This is used when writing log file

messages.

type The type of authenticator to use. This should be

AUTHENTICATED to specify the traditional “bind account”

method of authentication.

Configure Luminis LDAP authentication properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 136

ldapUrl The URL of the LDAP server. In our case, we use the URL

of the virtual host on the F5 load balancer, which has multi-

ple LDAP servers behind it.

validatePeriod The LDAP module periodically validates the connections in

its connection pool. But the default setting for how often to

do this (600 seconds) is longer than the idle timeout on the

F5 load balancer that fronts the LDAP servers (300 sec-

onds), which results in lots of warning messages being writ-

ten to the CAS log file (one per connection every ten min-

utes). Reducing the validation period to something shorter

than the load balancer idle timeout eliminates these mes-

sages.

userFilter The LDAP filter to select the user from the directory. Lumin-

is LDAP searches on the uid attribute, which is actually

the user’s username. The {user} pattern will be replaced

with the username string entered by the user.

baseDn The base DN to search against when retrieving attributes.

bindDN The DN of the account to bind to the directory with. This ac-

count must have search privileges on the directory.

bindCredential The password to the bind account.

Install and test on the master build server

Adding the Luminis LDAP server only required changing cas.properties , so there

is no need to rebuild or reinstall the server. Instead, just copy the new file into place

on the master build server (casdev-master) and restart Tomcat by running the

commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# cp etc/cas/config/cas.properties /etc/cas/config/cas.p

roperties

casdev-master# systemctl restart tomcat

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Configure Luminis LDAP authentication properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 137

Once everything has started, open up a web browser and enter the URL of the

CAS application on the master build server (https://casdev-

master.newschool.edu:8443/cas/login), and try to log in using a Luminis LDAP

username and password (one that isn’t also in Active Directory). The “Log In

Successful” page should appear. If it doesn’t, consult /var/log/cas/cas.log for

errors. Then try logging in with an Active Directory username and password to

confirm that the addition of LDAP didn’t break anything.

It may help to enable debugging on the LDAP module by changing the

org.ldaptive logging level to debug around line 95 in /etc/cas/config/

log4j2.xml :

<AsyncLogger name="org.ldaptive" level="debug" />

and restarting Tomcat.

Install and test on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers:

casdev-master# for host in srv01 srv02 srv03

> do

> scp etc/cas/config/cas.properties casdev-${host}:/etc/cas/config/ca

s.properties

> ssh casdev-${host} systemctl restart tomcat

> done

casdev-master#

and tested using the URL of the load balancer’s virtual interface

(https://casdev.newschool.edu/cas/login).

Commit changes to Git

Before moving on to the next phase of configuration, commit the changes made to

pom.xml and cas.properties to Git:

Configure Luminis LDAP authentication properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 138

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git commit -m "Added Luminis LDAP authentication"

[newschool-casdev 912da34] Added Luminis LDAP authentication

1 file changed, 15 insertions(+)

casdev-master#

References

• CAS 5: Configuration Properties: LDAP Authentication

Configure Luminis LDAP authentication properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 139

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#ldap-authentication-1

Configuring LDAP attribute resolution
and release

Summary: To enable client applications to obtain information about

authenticated users, the CAS server must be configured to resolve

attributes and release them to the clients.

Version 3 of the CAS protocol, which was first supported by CAS 4.0, contains

native support for returning authentication/user attributes to clients. Version 2 of the

CAS protocol, the version implemented by CAS 3.x, did not support attribute

release; the SAML 1.1 protocol was used for that purpose. Most CAS clients have

not yet been updated to support Version 3 of the protocol, so it’s still necessary to

configure SAML 1.1-based attribute release.

Add the SAML 1.1 dependency to the project object

model

To add SAML 1.1 support to the CAS server, edit the file pom.xml in the cas-

overlay-template directory on the master build server (casdev-master) and

locate the dependencies section (around line 69), which should look something like

this:

Configuring LDAP attribute resolution and release PDF last generated: October 18, 2018

Deploying Apereo CAS Page 140

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Insert a new dependency for the SAML 1.1 module:

Configuring LDAP attribute resolution and release PDF last generated: October 18, 2018

Deploying Apereo CAS Page 141

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

</dependencies>

This will instruct Maven to download the appropriate code modules and build them

into the server.

Rebuild the server

Run Maven again to rebuild the server according to the new model:

Configuring LDAP attribute resolution and release PDF last generated: October 18, 2018

Deploying Apereo CAS Page 142

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 43.966 s

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 30M/76M

[INFO]

casdev-master#

References

• CAS 5: SAML Protocol

Configuring LDAP attribute resolution and release PDF last generated: October 18, 2018

Deploying Apereo CAS Page 143

https://apereo.github.io/cas/5.2.x/protocol/SAML-Protocol.html

Configure attribute resolution
Now that the server has been configured to support attribute release, it must be

configured to resolve (retrieve) the attributes to be released. Since the LDAP

module has already been added to the server, all that is necessary to enable this is

the definition of some additional properties.

Configure Active Directory attribute resolution

Add the following lines to etc/cas/config/cas.properties in the cas-overlay-

template directory on the master build server (casdev-master) to enable CAS to

resolve attributes from Active Directory:

cas.authn.attributeRepository.ldap[0].order: 0

cas.authn.attributeRepository.ldap[0].ldapUrl: ldaps://zuu

l.newschool.edu

cas.authn.attributeRepository.ldap[0].validatePeriod: 270

cas.authn.attributeRepository.ldap[0].userFilter: sAMAccountNam

e={user}

cas.authn.attributeRepository.ldap[0].baseDn: ou=TNSUsers,d

c=tns,dc=newschool,dc=edu

cas.authn.attributeRepository.ldap[0].bindDn: cn=ldap_ssote

st,ou=Service,ou=Users,ou=Enterprise Support,dc=tns,dc=newschool,dc=e

du

cas.authn.attributeRepository.ldap[0].bindCredential: xxxxxxxxxxxx

cas.authn.attributeRepository.ldap[0].attributes.cn: uid

cas.authn.attributeRepository.ldap[0].attributes.displayName: displ

ayName

cas.authn.attributeRepository.ldap[0].attributes.givenName: given

Name

cas.authn.attributeRepository.ldap[0].attributes.mail: mail

cas.authn.attributeRepository.ldap[0].attributes.sn: sn

cas.authn.attributeRepository.ldap[0].attributes.tnsGoogleAppsRol

e: role

cas.authn.attributeRepository.ldap[0].attributes.tnsIDNumber: cn

The first seven properties should be self-explanatory (or see the descriptions in the

previous sections). Note that while we did not need to use a bind account to

authenticate users against Active Directory, we do need to use one to resolve

attributes.

Configure attribute resolution PDF last generated: October 18, 2018

Deploying Apereo CAS Page 144

The .attributes. properties specify, for each attribute, its name in the directory,

and the name it should be given when sending it to the client application (the

mapped name). For example, in the set of attributes above, the Active Directory

attributes cn , displayName , givenName , mail , sn , tnsGoogleAppsRole , and

tnsIDNumber will be retrieved and may be sent to client applications. The

attributes named cn , tnsGoogleAppsRole , and tnsIDNumber will be released with

the mapped names uid , role , and cn respectively, while the other attributes’

names will not be changed.

Configure Luminis LDAP attribute resolution

Add the following lines to etc/cas/config/cas.properties to enable CAS to

resolve attributes from Luminis LDAP:

cas.authn.attributeRepository.ldap[1].order: 1

cas.authn.attributeRepository.ldap[1].ldapUrl: ldaps://janu

s.newschool.edu

cas.authn.attributeRepository.ldap[1].validatePeriod: 270

cas.authn.attributeRepository.ldap[1].userFilter: uid={user}

cas.authn.attributeRepository.ldap[1].baseDn: ou=People,o=c

p

cas.authn.attributeRepository.ldap[1].bindDn: uid=ldap_ssot

est,ou=People,o=cp

cas.authn.attributeRepository.ldap[1].bindCredential: xxxxxxxxxxxx

cas.authn.attributeRepository.ldap[1].attributes.cn: cn

cas.authn.attributeRepository.ldap[1].attributes.displayName: displ

ayName

cas.authn.attributeRepository.ldap[1].attributes.givenName: given

Name

cas.authn.attributeRepository.ldap[1].attributes.mail: mail

cas.authn.attributeRepository.ldap[1].attributes.sn: sn

cas.authn.attributeRepository.ldap[1].attributes.udcid: UDC_IDENTIFIE

R

cas.authn.attributeRepository.ldap[1].attributes.uid: uid

As above, the first seven properties should be self-explanatory. The list of attributes

to be released is similar to, but not the same as, the list for Active Directory, above.

One difference is that the two directories use different attributes for the same

information. Luminis LDAP stores the username in the uid attribute and the

student/employee ID number in the cn attribute. Active Directory on the other

hand, stores the username in the cn attribute, and stores the student/employee ID

number in a custom attribute called tnsIDNumber . To make things match up so the

Configure attribute resolution PDF last generated: October 18, 2018

Deploying Apereo CAS Page 145

same data is in the same attribute from both directories (the reason for this will

become apparent below), the Active Directory configuration above switches things

around to match Luminis LDAP by mapping cn to uid and tnsIDNumber as cn .

Another difference is that Active Directory has an attribute called

tnsGoogleAppsRole (released as role) that Luminis LDAP doesn’t have, and

Luminis LDAP has an attribute called udcid (released as UDC_IDENTIFIER) that

Active Directory doesn’t have.

Configure an attribute merging strategy

Although CAS will only authenticate a user against the first directory (according to

the evaluation order) in which the user is found, it will attempt to retrieve attributes

from all configured repositories and then merge them together. The merging

strategy determines what happens when CAS discovers the same attribute (based

on the mapped name) in multiple repositories. The options are:

REPLACE Overwrites the existing value (if any) with the new value.

The attribute will contain the last value discovered.

ADD Retain the existing value (if any), and ignore any subse-

quent values discovered for the same attribute. The at-

tribute will contain the first value discovered.

MERGE Combine all values into a single attribute, resulting in a

comma-separated list of values.

In our case, we have a mix of users who are only in Active Directory, users who are

only in Luminis LDAP, and users who are in both directories. Most of the time the

duplicated attributes have the same value in both directories, but there are just

enough exceptions to make MERGE a bad idea (applications that don’t expect to

receive multi-valued attributes don’t handle them well). We have therefore

(somewhat arbitrarily) decided that for users in both directories, the values of their

attributes in Active Directory should “win,” and since Active Directory is the first

repository, we want to use the ADD strategy. So, add the following line to etc/cas/

config/cas.properties :

cas.authn.attributeRepository.merger: ADD

Had we instead decided that Luminis LDAP should “win,” REPLACE would be the

correct strategy. Or, we could stick with the ADD strategy and change the

evaluation order of the repositories.

Configure attribute resolution PDF last generated: October 18, 2018

Deploying Apereo CAS Page 146

References

• CAS 5: Configuration Properties: Authentication Attributes

• CAS 5: Configuration Properties: Merging Strategies

Configure attribute resolution PDF last generated: October 18, 2018

Deploying Apereo CAS Page 147

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#authentication-attributes
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#merging-strategies

Update the service registry
Attribute release policies are defined on a per-service basis in the service registry.

There are four basic attribute release policies:

Return All Return all resolved attributes to the service.

Deny All Do not return any attributes to the service. This will also

prevent the release of the default attribute pool (see the

note below).

Return Allowed Only return the attributes specifically allowed by the policy.

This policy includes a list of the attributes to release.

Return Mapped Only return the attributes specifically allowed by the policy,

but also allow them to be renamed at the individual service

level. Useful when a particular service insists on having

specific attribute names not used by other services.

The syntax for defining the above policies is defined in the CAS 5 Attribute Release

Policies documentation. That document also describes a number of script-based

policies that will call a Groovy, JavaScript, or Python script to decide how to release

attributes (these policies are beyond the scope of this document).

 Note: The cas.authn.attributeRepository.defaultAttributesToRelease

property can be set in cas.properties to a comma-separated list of attributes

that should be released to all services, without having to list them in every

service definition. We are not using this feature in our installation, because it

makes it harder to determine which attributes are released to a particular

service (by requiring the administrator to look in more than one location).

Create a “return all attributes” service definition for the

CAS client

When we initially created the service registry (page 110), we created a wildcard

service definition that would match any service. Now however, it makes sense to

create a specific definition for our CAS client, and use that definition to release

attributes to the client. Create a file in the etc/cas/services directory on the

master build server (casdev-master) with the following contents:

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 148

{

"@class" : "org.apereo.cas.services.RegexRegisteredService",

"serviceId" : "^https://casdev-casapp.newschool.edu/secured-by-ca

s(\\z|/.*)",

"name" : "Apache Secured By CAS",

"id" : 1504122840,

"description" : "CAS development Apache mod_auth_cas server with us

ername/password protection",

"attributeReleasePolicy" : {

"@class" : "org.apereo.cas.services.ReturnAllAttributeReleasePoli

cy"

},

"evaluationOrder" : 1100

}

Following the naming convention introduced earlier (page 110), the name of this file

should be ApacheSecuredByCAS-1504122840.json . The id value, and therefore

that part of the filename, should use the current date and time represented as a

timestamp (as output by date +%s) or as YYYYMMDDhhmmss .

This service definition uses a serviceId regular expression that matches only the

URL for the secured-by-cas directory on the casdev-casapp server. The

(\\z|/.*) syntax at the end matches either the empty string (\\z) or a slash (‘/’)

followed by anything (/.*), meaning that the following will match:

https://casdev-casapp.newschool.edu/secured-by-cas

https://casdev-casapp.newschool.edu/secured-by-cas/

https://casdev-casapp.newschool.edu/secured-by-cas/index.php

https://casdev-casapp.newschool.edu/secured-by-cas/subdir/file.html

but the following will not:

https://casdev-casapp.newschool.edu/secured-by-cas-and-something-else

https://casdev-casapp.newschool.edu/some/other/path

https://casdev-master.newschool.edu/secured-by-cas

This service definition uses a description property instead of a comment to

describe the service; this way the definition will appear in the management webapp

(page 236).

The evaluationOrder has been given a value lower than that of the wildcard

definition, so this definition will be matched first.

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 149

And finally, this definition includes the “Release All” attributeReleasePolicy

property, which means that the CAS client will receive all attributes that could be

resolved for the authenticating user.

Create a “return mapped attributes” service definition for

the CAS client

One of the applications that we use, Ellucian’s Luminis portal, expects to receive a

couple of attributes with names other than the ones commonly used: instead of a

mail attribute, it expects to receive an EmailAddress attribute, and instead of a

givenName attribute, it expects to receive a Formatted Name attribute (despite the

fact that attribute names are not supposed to contain spaces). We could have

made these mappings in the cas.properties file, but that would then require all

applications to support these unusual attribute names. So instead, we will use the

“Return Mapped” attribute release policy to perform the mapping only for this

application.

To test this idea with our CAS client, create a file in the etc/cas/services

directory on the master build server (casdev-master) with the following contents:

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 150

{

"@class" : "org.apereo.cas.services.RegexRegisteredService",

"serviceId" : "^https://casdev-casapp.newschool.edu/return-mappe

d(\\z|/.*)",

"name" : "Return Mapped Test",

"id" : 1506518400,

"description" : "Display results of a Return Mapped attribute relea

se policy",

"attributeReleasePolicy" : {

"@class" : "org.apereo.cas.services.ReturnMappedAttributeReleaseP

olicy",

"allowedAttributes" : {

"@class" : "java.util.TreeMap",

"cn" : "cn",

"displayName" : "displayName",

"givenName" : "Formatted Name",

"mail" : "EmailAddress",

"memberOf" : "memberOf",

"role" : "role",

"sn" : "sn",

"uid" : "uid",

"UDC_IDENTIFIER": "UDC_IDENTIFIER"

}

},

"evaluationOrder" : 1150

}

The name of this file should be ReturnMappedTest-1506518400.json . The id

value, and therefore that part of the filename, should use the current date and time

represented as a timestamp (as output by date +%s) or as YYYYMMDDhhmmss .

In this definition, the attributeReleasePolicy property uses the

ReturnMappedAttributeReleasePolicy instead of the

ReturnAllAttributeReleasePolicy ; this requires us to provide a new sub-property

called allowedAttributes that contains the list of attributes to be released. For

each attribute, the attribute’s name (as set in cas.properties) appears on the left,

and the name it should be released with (the mapped name) for this application

only appears on the right.

References

• CAS 5: Attribute Release Policies

• CAS 5: JSON Service Registry

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 151

https://apereo.github.io/cas/5.2.x/integration/Attribute-Release-Policies.html
https://apereo.github.io/cas/5.2.x/installation/JSON-Service-Management.html

Update the CAS client configuration
Now that the CAS server has been configured to resolve attributes and release

them to the CAS client, the CAS client has to be configured to ask for them.

Update mod_auth_cas settings

Edit the file /etc/httpd/conf.d/cas.conf on the client server (casdev-casapp)

and make the following changes:

1. In the <Directory> directive, add a line to set CASAuthNHeader to On .

This tells mod_auth_cas to add an HTTP header containing the user

returned by CAS.

2. Add a second <Directory> directive, just like the first, except using the

path /var/www/html/return-mapped

3. At the bottom of the file, change the value of the CASValidateURL setting

from .../serviceValidate to .../samlValidate . This is the endpoint

provided by the server for authentcating users and returning attribues via

SAML 1.1.

4. At the bottom of the file, add a line to set CASValidateSAML to On . This

tells mod_auth_cas to use SAML 1.1 to retrieve user attributes and store

them as HTTP headers.

The result should look like this:

Update the CAS client configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 152

LoadModule auth_cas_module modules/mod_auth_cas.so

<Directory "/var/www/html/secured-by-cas">

<IfModule mod_auth_cas.c>

AuthType CAS

CASAuthNHeader On

</IfModule>

Require valid-user

</Directory>

<Directory "/var/www/html/return-mapped">

<IfModule mod_auth_cas.c>

AuthType CAS

CASAuthNHeader On

</IfModule>

Require valid-user

</Directory>

<IfModule mod_auth_cas.c>

CASLoginUrl https://casdev.newschool.edu/cas/login

CASValidateUrl https://casdev.newschool.edu/cas/samlValida

te

CASCookiePath /var/cache/httpd/mod_auth_cas/

CASValidateSAML On

CASSSOEnabled On

CASDebug Off

</IfModule>

Create a new secure content area

Make a copy of the existing secure content area on the client server (casdev-

casapp):

casdev-casapp# cd /var/www/html

casdev-casapp# cp -rp secured-by-cas return-mapped

Then edit the file return-mapped/index.html and update the heading and

paragraph of text to reflect the requirements to view it:

Update the CAS client configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 153

<h1>Return Mapped Attributes</h1>

<p><big>This is some secure content. You should not be able to see it

until you have entered your username and password. The attributes in

the list below should have their "new" names as a result of using a

"Return Mapped" attribute release policy.</big></p>

Leave the rest of the file unchanged.

Update the public content page

Update /var/www/html/index.php to include a link to the new secure area:

<!DOCTYPE html>

<html lang="en">

<head>

<title>Hello, World!</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scal

e=1">

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.m

in.css">

</head>

<body>

<div class="container">

<h1>Hello, World!</h1>

<p><big>The quick brown fox jumped over the lazy dogs.</bi

g></p>

<p><big>Click here fo

r some

content secured by username and password.</big></p>

<p><big>Click here to s

ee the

results of the "Return Mapped" attribute release policy.</b

ig></p>

</div>

</body>

</html>

Restart HTTPD

Run the command

Update the CAS client configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 154

casdev-casapp# systemctl restart httpd

to restart the HTTPD server with the new configuration. Check the log files in

/var/log/httpd for errors.

References

• GitHub repo for mod_auth_cas

Update the CAS client configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 155

https://github.com/apereo/mod_auth_cas
https://github.com/apereo/mod_auth_cas

Install and test the application
Before attribute resolution and release can be used, the rebuilt CAS application

and the updated configuration files must be installed. Then everything can be

tested by accessing the “public” part of the client application web site and then

clicking on the link to the “secure” section. At that point, the browser should be

redirected to the CAS server, where upon successful authentication the secure

content, including the values of the attributes, will be displayed.

Because both the load balancer and the CAS server use cookies, it’s usually best

to perform testing with an “incognito” or “private browsing” instance of the web

browser that deletes all cookies each time it is closed.

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS application and configuration files on the master build server

(casdev-master):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the scripts created earlier (page 99):

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 156

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Shut down all but one of the pool servers

Operating CAS with a pool of servers instead of a single server requires special

configuration. Because that configuration hasn’t been completed yet, testing must

be performed against a single server. Therefore, the other servers in the pool

should be shut down so that the load balancer will direct all traffic to that single

server. Run the command

systemctl stop tomcat

on all but one of the CAS servers (casdev-srvXX) to temporarily take those

servers out of the pool.

Access the public site

Open up a web browser (in “incognito” or “private browsing” mode) and enter the

URL of the CAS-enabled web site:

https://casdev-casapp.newschool.edu/

The contents of /var/www/html/index.php should be displayed, looking

something like this:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 157

Figure 10. The "public" site

Access the “return all attributes” secure area

Click on the first “here” link to access the “release all attributes” secure content,

and you will be redirected to the CAS server login page, as shown below:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 158

Figure 11. The CAS login page

Note that the contents of the name field from the service registry are displayed at

the top of the right-hand column; make sure that Apache Secured by CAS is

displayed here and not HTTPS and IMAPS wildcard . Enter a valid username and

password (Active Directory or LDAP) and, upon successful authentication, the

contents of /var/www/html/secured-by-cas/index.php will be displayed:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 159

Figure 12. The "secure" content

Note that the value shown for the REMOTE_USER variable is the username that was

entered on the CAS login page (gnarls), and that the attributes configured for

release (page 144) are all shown, along with some additional values provided as

part of the SAML 1.1 response from the CAS server.

Access the “return mapped attributes” secure area

Click the “back” button in the browser a couple of times (or start up a new one in

“incognito” or “private browsing” mode) to get back to the “public” page shown in

Figure 10, and then click on the second “here” link to access the “return mapped

attributes” secure area, which will display the contents of /var/www/html/return-

mapped/index.php :

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 160

Figure 13. The "mapped" content

Note that the mail and givenName attributes have been replaced with

EmailAddress and Formatted-Name (spaces in attributed names are not allowed,

so a ‘-‘ is inserted), but the values of the attributes are the same.

Restart the pool servers

One testing is complete, run the command

systemctl start tomcat

on each of the pool servers shut down previously.

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 161

Commit changes to Git
Before moving on to to the next phase of configuration, commit the changes made

to pom.xml and cas.properties , as well as the new etc/cas/services/

ApacheSecuredByCAS-1504122840.json and etc/cas/services/

ReturnMappedTest-1506518400.json files, to Git to make them easier to keep track

of (and to enable reverting to earlier configurations easier). Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git add etc/cas/services/ApacheSecuredByCAS-150412284

0.json

casdev-master# git add etc/cas/services/ReturnMappedTest-1506518400.j

son

casdev-master# git add pom.xml

casdev-master# git commit

on the master build server (casdev-master). The git commit command will will

bring up a text editor so you can describe the commit. Enter something like:

Add LDAP support:

1. Add LDAP and SAML 1.1 modules to server

2. Configure Active Directory authentication

3. Configure Luminis LDAP authentication

4. Configure AD/LDAP attribute resolution

5. Create CasApp service definition

Then save and exit the editor, and Git will finish its work:

[newschool-casdev 0cb7e85] Add LDAP support: 1. Add LDAP and SAML

1.1 modules to server 2. Configure Active Directory authentication

3. Configure Luminis LDAP authentication 4. Configure AD/LDAP attrib

ute resolution 5. Create CasApp service definition

3 files changed, 64 insertions(+)

create mode 100644 etc/cas/services/ApacheSecuredByCAS-1504122840.js

on

create mode 100644 etc/cas/services/ReturnMappedTest-1506518400.json

casdev-master#

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 162

Adding MFA support

Summary: Multi-factor authentication from Duo Security will be used

to secure access to applications containing sensitive information or

providing sensitive functionality.

CAS 5 provides a flexible framework for multi-factor authentication (MFA) that

supports multiple multi-factor providers. MFA can be required on a per-service

basis or across the board for all services. It can be required for individual named

users, groups of users, or all users. Multiple MFA products/solutions can be

supported in the same CAS server instance (and indeed, if desired, multiple MFA

products/solutions can be required to access a single service).

The New School is currently in the early stages of rolling out Duo Security to all

faculty and staff to access certain select applications. Duo offers several options for

authenticating users:

• a mobile push notification and one-button verification of identity to a

smartphone (requires the free Duo Mobile app)

• a one-time code generated on a smartphone

• a one-time code generated by Duo and sent to a handset via SMS text

messaging

• a telephone call from that will prompt you to validate the login request

Add the Duo dependency to the project object model

To add Duo support to the CAS server, edit the file pom.xml in the cas-overlay-

template directory on the master build server (casdev-master) and locate the

dependencies section (around line 69), which should look something like this:

Adding MFA support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 163

https://duo.com/

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Insert a new dependency for the Duo module:

Adding MFA support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 164

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-duo</artifactId>

<version>${cas.version}</version>

</dependency>

</dependencies>

This will instruct Maven to download the appropriate code modules and build them

into the server.

Rebuild the server

Run Maven again to rebuild the server according to the new model:

Adding MFA support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 165

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 01:02 min

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 30M/79M

[INFO]

casdev-master#

References

• CAS 5: Multi-factor Authentication

• CAS 5: Duo Security Authentication

Adding MFA support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 166

https://apereo.github.io/cas/5.2.x/installation/Configuring-Multifactor-Authentication.html
https://apereo.github.io/cas/5.2.x/installation/DuoSecurity-Authentication.html

Configure Duo authentication
Configuring Duo authentication requires setting up a new application to be

protected via the Duo administrator console, and then copying some of the

information from that configuration to the cas.properties file.

Create a new Duo protected application

To create a new Duo protected application:

1. Log into the Duo administrator console.

2. Select “Applications > Protect an Application” from the links on the left side

of the window.

3. Find the entry for CAS (Central Authentication Service) in the list of

applications and click on “Protect this Application”.

4. Scroll down to the Settings section and set the application name to

something meaningful, for example, CASDev CAS Server .

5. Make any other settings changes as appropriate.

6. Click “Save Changes”.

Don’t log out of the administrator console yet; some of the information there must

be copied to cas.properties .

Configure Duo authentication properties

Add the following settings to etc/cas/config/cas.properties in the cas-

overlay-template directory on the master build server (casdev-master) to enable

Duo authentication:

cas.authn.mfa.duo[0].duoApiHost: api-a1b2c3d4.duosecurity.com

cas.authn.mfa.duo[0].duoIntegrationKey: DIYQCAFU5Q5UCD24J00R

cas.authn.mfa.duo[0].duoSecretKey: FeTtpcOFyDxvtrtOXqma74DztXf7I

NRDKENMhAOF

cas.authn.mfa.duo[0].duoApplicationKey: 3d787231f9b9e128a9b94647b6e96

8f1fe0deddc

The [0] in the property names indicates that this is the first Duo provider to be

configured. Additional providers (for example, if there are different providers for

different locations or different groups of users) will be [1] , [2] , etc.

Configure Duo authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 167

The duoApiHost , duoIntegrationKey , and duoSecretKey values should be

copied from the Details section of the protected application page in the Duo

administrator console (see above).

The duoApplicationKey value is a string, at least 40 characters long, that is

generated locally and is not shared with Duo. The CAS documentation offers the

procedure below for generating this string:

casdev-master# python

Python 2.7.5 (default, Aug 2 2016, 04:20:16)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-4)] on linux2

Type "help", "copyright", "credits" or "license" for more informatio

n.

>>> import os, hashlib

>>> print hashlib.sha1(os.urandom(32)).hexdigest()

3d787231f9b9e128a9b94647b6e968f1fe0deddc

>>> exit()

casdev-master#

References

• CAS 5: Configuration Properties: Duo Security

Configure Duo authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 168

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#duosecurity

Update the CAS client configuration
To allow the CAS client to test/demonstrate both content secured only by CAS and

content secured by both CAS and Duo at the same time, create a new secure

content area on the CAS client server and configure Apache HTTPD to protect it.

Create a new secure content area

Make a copy of the existing secure content area on the client server (casdev-

casapp):

casdev-casapp# cd /var/www/html

casdev-casapp# cp -rp secured-by-cas secured-by-cas-duo

Then edit the file secured-by-cas-duo/index.php and update the paragraph of

text to reflect the requirements to view it:

<p><big>This is some secure content. You should not be able to see it

until you have entered your username and password and authenticated

with Duo.</big></p>

Leave the rest of the file unchanged.

Update mod_auth_cas settings

Edit the file /etc/httpd/conf.d/cas.conf on the client server (casdev-casapp)

and create another <Directory> element for the new secure content area created

above:

<Directory "/var/www/html/secured-by-cas-duo">

<IfModule mod_auth_cas.c>

AuthType CAS

CASAuthNHeader On

</IfModule>

Require valid-user

</Directory>

Update the CAS client configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 169

Except for the path name of the directory, it should be identical to the other

<Directory> elements.

Update the public content page

Update /var/www/html/index.php to include a link to the new secure area:

<!DOCTYPE html>

<html lang="en">

<head>

<title>Hello, World!</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scal

e=1">

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.m

in.css">

</head>

<body>

<div class="container">

<h1>Hello, World!</h1>

<p><big>The quick brown fox jumped over the lazy dogs.</bi

g></p>

<p><big>Click here fo

r some

content secured by username and password.</big></p>

<p><big>Click here to s

ee the

results of the "Return Mapped" attribute release policy.</b

ig></p>

<p><big>Click her

e for some

content secured by username/password and Duo MFA.</big></p>

</div>

</body>

</html>

Restart HTTPD

Run the command

casdev-casapp# systemctl restart httpd

Update the CAS client configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 170

to restart the HTTPD server with the new configuration. Check the log files in

/var/log/httpd for errors.

Update the CAS client configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 171

Update the service registry
Although it’s possible to enable MFA across the board for all services by setting

properties in cas.properties (see CAS 5: Configuration Properties: Multi-factor

Authentication), it’s usually preferable to configure it on a per-service basis in the

service registry.

Create a second service definition for the CAS client

Make a copy of etc/cas/services/ApacheSecuredByCAS-1504122840.json in the

cas-overlay-template directory on the master build server (casdev-master) and

call it ApacheSecuredByCASandDuo-1504200420.json (replace 1504200420 with the

current date +%s or YYYYMMDDhhmmss value):

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# cp -p etc/cas/services/ApacheSecuredByCAS-1504122840.j

son etc/cas/services/ApacheSecuredByCASandDuo-201700831132700.json

Then edit etc/cas/services/ApacheSecuredByCASandDuo-1504200420.json and do

the following:

1. Change the serviceId property to reflect the path to the secure area

created in the previous step (page 169).

2. Change the id property to a unique value (make sure this value matches

the one in the filename).

3. Change the description property to include the Duo MFA requirement.

4. Add the multifactorPolicy property as shown below.

5. Change the evaluationOrder property to a different value.

When done, the file should look something like this:

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 172

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#multifactor-authentication
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#multifactor-authentication

{

"@class" : "org.apereo.cas.services.RegexRegisteredService",

"serviceId" : "^https://casdev-casapp.newschool.edu/secured-by-ca

s-duo(\\z|/.*)",

"name" : "Apache Secured By CAS and Duo",

"id" : 1504200420,

"description" : "CAS development Apache mod_auth_cas server with us

ername/password and Duo MFA protection",

"attributeReleasePolicy" : {

"@class" : "org.apereo.cas.services.ReturnAllAttributeReleasePoli

cy"

},

"multifactorPolicy" : {

"@class" : "org.apereo.cas.services.DefaultRegisteredServiceMulti

factorPolicy",

"multifactorAuthenticationProviders" : ["java.util.LinkedHashSe

t", ["mfa-duo"]]

},

"evaluationOrder" : 1200

}

The multifactorPolicy added here defines a single MFA provider, mfa-duo . It

does not allow the MFA requirement to be bypassed (meaning that users not

registered with Duo will not be able to log in), and it will fail “closed,” meaning that if

for some reason the Duo service is unavailable, users will not be able to log in.

References

• CAS 5: Duo Security Authentication

• CAS 5: Configuration Properties: Multi-factor Authentication

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 173

https://apereo.github.io/cas/5.2.x/installation/DuoSecurity-Authentication.html
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#multifactor-authentication

Install and test the application
Before multi-factor authentication can be used, the rebuilt CAS application and the

updated configuration files must be installed. Then everything can be tested by

accessing the “public” part of the client application web site and then clicking on the

link to the “secure” section. At that point, the browser should be redirected to the

CAS server, where upon successful authentication the secure content, including

the values of the attributes, will be displayed.

Because both the load balancer and the CAS server use cookies, it’s usually best

to perform testing with an “incognito” or “private browsing” instance of the web

browser that deletes all cookies each time it is closed.

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS application and configuration files on the master build server

(casdev-master):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the scripts created earlier (page 99):

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 174

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Shut down all but one of the pool servers

Operating CAS with a pool of servers instead of a single server requires special

configuration. Because that configuration hasn’t been completed yet, testing must

be performed against a single server. Therefore, the other servers in the pool

should be shut down so that the load balancer will direct all traffic to that single

server. Run the command

systemctl stop tomcat

on all but one of the CAS servers (casdev-srvXX) to temporarily take those

servers out of the pool.

Access the public site

Open up a web browser (in “incognito” or “private browsing” mode) and enter the

URL of the CAS-enabled web site:

https://casdev-casapp.newschool.edu/

The contents of /var/www/html/index.php should be displayed, looking

something like this:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 175

Figure 14. The "public" site

Access the secure area

Click on the second “here” link to access the content secured by CAS and Duo,

and you will be redirected to the CAS server login page, as shown below:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 176

Figure 15. The CAS login page

Note that the contents of the name field from the service registry are displayed at

the top of the right-hand column; make sure that Apache Secured by CAS and Duo

is displayed here. Enter a valid username and password (Active Directory or LDAP)

that is also registered with Duo and, upon successful first-stage authentication, the

Duo MFA authentication page will appear, as shown below:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 177

Figure 16. The Duo authentication page

Upon successful Duo authentication, the contents of /var/www/html/secured-by-

cas-duo/index.php will be displayed:

Figure 17. The "secure" content

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 178

Restart the pool servers

One testing is complete, run the command

systemctl start tomcat

on each of the pool servers shut down previously.

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 179

Commit changes to Git
Before moving on to the next task, commit the changes made to pom.xml and

cas.properties , as well as the new etc/cas/services/

ApacheSecuredByCASandDuo-1504200420.json file, to Git to make them easier to

keep track of (and to enable reverting to earlier configurations easier). Run the

commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git add etc/cas/services/ApacheSecuredByCASandDuo-1504

200420.json

casdev-master# git add pom.xml

casdev-master# git commit -m "Added Duo MFA support"

[newschool-casdev 7a51280] Added Duo MFA support

3 files changed, 38 insertions(+)

create mode 100644 etc/cas/services/ApacheSecuredByCASandDuo-1504200

420.json

casdev-master#

on the master build server (casdev-master). The git commit command will not

bring up a text editor as it did last time, since we provided the commit message on

the command line.

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 180

Adding SAML support

Summary: CAS 5's native capability to operate as a SAML2 Identity

Provider will be used to provide authentication and single sign-on

support to services that do not support the CAS protocol.

The CAS protocol is our preferred protocol for authentication and single sign-on:

it’s easy to understand, easy to configure, and “just works.” Unfortunately, while

CAS is pretty well supported by applications and services designed for the higher

education market, is is much less widely supported by applications and services

targeted mainly at the corporate world. These applications and services typically

use the SAML2 protocol instead. Prior to CAS 5, supporting both protocols together

required setting up a Shibboleth server alongside the CAS server, and configuring

one server to use the other as its authentication source. Although this more or less

worked, it was difficult to manage, and didn’t handle all aspects of single sign-on

(especially single log-out) very cleanly.

It’s important to understand two terms when talking about SAML, Identity Provider

and Service Provider:

Identity Provider

(IdP)

A SAML Identity Provider (IdP) is a service that authenti-

cates users (“principals”) by means such as usernames,

passwords, and multi-factor authentication schemes. An

authenticated user is given a security token that he or she

can present to service providers (SPs, see below) to gain

access to their services. The IdP also accepts users’ secu-

rity tokens from SPs and returns an indication of whether or

not they are valid. CAS 5 has added full native SAML2 sup-

port, enabling the CAS server to function as an IdP and

eliminating our dependency on Shibboleth.

Service Provider

(SP)

A SAML Service Provider (SP) is an entity that provides

web services to users. When a user attempts to access the

service, he or she must present the service with a security

token generated by a recognized IdP. The SP validates the

token with the IdP. If the user does not have a token, or the

presented token is invalid, the SP sends the user to the IdP

to obtain a new one. The SAML client (page 199) that we

will build in the next section will be our SP for testing pur-

poses.

Adding SAML support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 181

https://www.shibboleth.net/products/identity-provider/

Add the SAML2 IdP dependency to the project object

model

To add SAML2 IdP support to the CAS server, edit the file pom.xml in the cas-

overlay-template directory on the master build server (casdev-master) and

locate the dependencies section (around line 69), which should look something like

this:

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-duo</artifactId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Insert the new dependency for the SAML2 IdP support just after the cas-server-

support-saml dependency added previously:

Adding SAML support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 182

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml-idp</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-duo</artifactId>

<version>${cas.version}</version>

</dependency>

</dependencies>

This will instruct Maven to download the appropriate code modules and build them

into the server.

 Note: There are two different SAML dependencies: cas-server-support-

saml enables support for returning user attributes to client applications; cas-

server-support-saml-idp enables support for using the CAS server as a

SAML2 Identity Provider. Both dependencies should be included in pom.xml.

Adding SAML support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 183

Rebuild the server

Run Maven to rebuild the server according to the new model:

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 01:00 min

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 35M/84M

[INFO]

casdev-master#

References

• CAS 5: Configuring SAML2 Authentication

Adding SAML support PDF last generated: October 18, 2018

Deploying Apereo CAS Page 184

https://apereo.github.io/cas/5.2.x/installation/Configuring-SAML2-Authentication.html

Update the server configuration
The CAS server’s IdP functionality requires some adjustments to Tomcat’s settings,

a couple of new CAS property settings, and the creation of a cache directory where

SAML2 metadata can be stored.

Adjust Tomcat settings

The SAML2 protocol requires the use of large (2MB) HTTP header sets and large

(2MB) HTTP POST payloads. To enable this support on Tomcat’s HTTP connector,

edit the file /opt/tomcat/latest/conf/server.xml on the master build server

(casdev-master) and locate the definition of the HTTPS connector (around line

89), which should look something like this:

<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioPr

otocol"

sslImplementationName="org.apache.tomcat.util.net.openssl.OpenSSL

Implementation"

SSLEnabled="true" connectionTimeout="20000" maxThreads="150">

<SSLHostConfig

ciphers="ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POL

Y1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDH

E-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES12

8-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDH

E-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:EC

DHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:E

CDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RS

A-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RS

A-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA3

84:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DS

S"

honorCipherOrder="true" protocols="all,-SSLv2Hello,-SSLv2,-SS

Lv3"

disableSessionTickets="true">

<Certificate

certificateKeystoreFile="/opt/tomcat/keystore.jks"

certificateKeystorePassword="changeit"

type="RSA" />

</SSLHostConfig>

<UpgradeProtocol className="org.apache.coyote.http2.Http2Protoco

l" />

</Connector>

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 185

Add the maxHttpHeaderSize and maxPostSize attributes to the connector

definition, like this:

<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioPr

otocol"

sslImplementationName="org.apache.tomcat.util.net.openssl.OpenSSL

Implementation"

SSLEnabled="true" maxHttpHeaderSize="2097152" maxPostSize="209715

2"

connectionTimeout="20000" maxThreads="150">

Configure SAML IdP properties

Add the following settings to etc/cas/config/cas.properties in the cas-

overlay-template directory on the master build server (casdev-master) to

configure the SAML IdP:

cas.authn.samlIdp.entityId: ${cas.server.prefix}/idp

cas.authn.samlIdp.scope: newschool.edu

The entityId parameter is the URL by which the IdP is known to clients (SPs).

The scope parameter identifies the “scope” in which attributes returned by the IdP

apply; this is typically a DNS domain.

Create the metadata cache directory

Create the directory etc/cas/saml in the cas-overlay-template directory on the

master build server:

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# mkdir etc/cas/saml

Adjust the server installation script

If you created an installation shell script (page 99) earlier, edit that script and, just

after the line that extracts the tar file (around line 12), add a chmod command to

restore group write permission to the etc/cas/saml directory so the CAS server

can create files there:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 186

cd /

rm -rf etc/cas/config etc/cas/services

tar xzf /tmp/cassrv-files.tgz etc/cas

chmod g+w etc/cas/saml

References

• CAS 5: Configuration Properties: SAML IdP

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 187

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#saml-idp

Update the service registry
When the CAS server starts and initializes the SAML IdP, it creates a new

(undocumented, as of this writing) endpoint, ${cas.server.prefix}/idp/profile/

SAML2/Callback . It then checks the service registry to see if there is an existing

service definition whose serviceId will match then endpoint and allow access. If

there isn’t one, the CAS server will create a new service definition for the endpoint,

and save it to the service registry. If the CAS server does not have permission to

create new entries in the service registry for whatever reason, then the save will

fail, and the server will not start. The error messages in the CAS log file will be

somewhat cryptic in this case, because they won’t refer to SAML or the IdP at all.

But the relevant lines will look something like this:

===

WHO: audit:unknown

WHAT: IO error opening file stream.

ACTION: SAVE_SERVICE_FAILED

APPLICATION: CAS

WHEN: Ddd Mon DD hh:mm:ss zzz YYYY

CLIENT IP ADDRESS: unknown

SERVER IP ADDRESS: unknown

===

(...lots of stack trace output...)

Caused by: java.io.FileNotFoundException: /etc/cas/services/RegexRegi

steredService-6805904835673174978.json (Permission denied)

As luck would have it, back when we first set up our service registry (page 107), we

created a “wildcard” service definition (HTTPSandIMAPSwildcard-1503925297.json)

that will match the endpoint above, so the CAS server will not create a new service

definition and try to save it in the registry. However, while a wildcard service

definition is fine in a development or test environment, we won’t have such a thing

in our production environment.

Create a service definition for the IdP endpoint

To avoid any risk of the server failing to start as described above, and also to make

it clear that the IdP endpoint is a “desired” service, we will explicitly create a service

definition file for it.

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 188

Make a copy of etc/cas/services/HTTPSandIMAPSwildcard-1503925297.json in

the cas-overlay-template directory on the master build server (casdev-master)

and call it SAML2CallbackProfile-1509029745.json (replace 1509029745 with the

current date +%s or YYYYMMDDhhmmss value):

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# cp -p etc/cas/services/HTTPSandIMAPSwildcard-150392529

7.json etc/cas/services/SAML2CallbackProfile-1509029745.json

Then edit etc/cas/services/SAML2CallbackProfile-1509029745.json and do the

following:

1. Change the serviceId property to https://casdev.newschool.edu/cas/

idp/profile/SAML2/Callback.+ (note the .+ regular expression

component on the end).

2. Change the name property to SAML Authentication Request .

3. Change the id property to a unique value (make sure this value matches

the one in the filename).

4. Change the evaluationOrder property to a value smaller than the other

services’ values, to (hopefully) ensure that this definition will always match

the endpoint.

5. Add a comment to explain what the definition is for (optional).

When done, the file should look something like this:

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 189

{

/*

* The CAS SAML IdP creates this endpoint as part of its initializa

tion

* process at server startup time. If the service registry doesn't

already

* contain an entry whose serviceId matches the endpoint, CAS will

create

* a new service definition and save it to the registry. If the CA

S server

* doesn't have write access to the registry, then the save will fa

il and

* the server will not start.

*

* To avoid that situation, and to make it clear that this endpoin

t is a

* "desired" service, it is defined explicitly here.

*/

"@class" : "org.apereo.cas.services.RegexRegisteredServi

ce",

"serviceId" : "https://casdev.newschool.edu/cas/idp/profil

e/SAML2/Callback.+",

"name" : "SAML Authentication Request",

"id" : 1509029745,

"evaluationOrder" : 100

}

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 190

Install and test the IdP

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS application and configuration files on the master build server

(casdev-master):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Check that the IdP is working on the master build server

To check that the IdP functionality is working, use curl to request the IdP’s

metadata:

Install and test the IdP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 191

casdev-master# curl -k https://casdev-master.newschool.edu:8443/cas/i

dp/metadata

<?xml version="1.0" encoding="UTF-8"?>

<EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata" xmln

s:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:shibmd="urn:mace:shib

boleth:metadata:1.0" xmlns:xml="http://www.w3.org/XML/1998/namespac

e" xmlns:mdui="urn:oasis:names:tc:SAML:metadata:ui" entityID="http

s://casdev.newschool.edu/idp">

<IDPSSODescriptor protocolSupportEnumeration="urn:oasis:names:t

c:SAML:2.0:protocol urn:oasis:names:tc:SAML:1.1:protocol urn:mace:shi

bboleth:1.0">

<Extensions>

<shibmd:Scope regexp="false">newschool.edu</shibmd:Scope>

</Extensions>

<KeyDescriptor use="signing">

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>MIIDMjCCAhqgAwIBAgIVAJ52X1Nr0

7ZSRcD/sf+/sru29lnuMA0GCSqGSIb3DQEB

CwUAMB8xHTAbBgNVBAMMFGNhc2Rldi5uZXdzY2hvb2wuZWR1MB4XDTE3MTAyMzE4

MzQxNloXDTM3MTAyMzE4MzQxNlowHzEdMBsGA1UEAwwUY2FzZGV2Lm5ld3NjaG9v

bC5lZHUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC9Ewa1ETMNN0rF

mpzNZln2x638hQjX78T5F78nk0/K37aHXaOUH7AgQshFuDVct+QfApur4FRtJl/H

F+LMJRSastrZDnjFEBMkb4iVsXZVQ+H+UsPEyVmPYfzTjtNwJFLsQfNStNmHF7AG

y+/3WxTa0KZKXq2yzGKIy9cnvmqzvve2PVmBOhwn3zFiT0ZgY+RoWzQVtIzkFst/

OATUg2c93LucM0x6Ec7VAYrH6sgBNjiP3NfsXv49mJhTJXuAkeWo3wGApR6R4ezm

meUm0HrNCZQ6dTRDGl5qZmax0ltCS2iJnwtd8BUSvwzZT1YrX57Qg2jrMZoo+SHR

FpCrQu79AgMBAAGjZTBjMB0GA1UdDgQWBBSDv5Ny5w80rMMx/VwYv5lsTVqYqzBC

BgNVHREEOzA5ghRjYXNkZXYubmV3c2Nob29sLmVkdYYhY2FzZGV2Lm5ld3NjaG9v

bC5lZHUvaWRwL21ldGFkYXRhMA0GCSqGSIb3DQEBCwUAA4IBAQAmhBGB9wOMJhZa

K9g1cX8bk9AcVeJAbltx/MUjiyopj98zy0DuuhUVPT1F2c36FFYzMx5JrCOfIwOl

BbDHSiSCTUapjQe2+McvTH2/Cvi2lNJ4rjlZpIdINJdzwEcTUnJYnUnWoO0oPALM

/V/IHlzqBR+lOtcv1wW19+WYT+BLzNMKc/ThmK2kZK88dpyLCyrxfiv1Om3dYNGM

oM6d+kQLuxM+h3qhnFVo/Xg3GJEImXoAYPS8A165y8kTJOa6FuvTR9kjmLoZ5E+9

36HVMrpjJZZO/XduOZ7k5qN20wRYMMyA7Lf85hgKItEmTJe/McrQgthbRaSsgY5q

nrndd+52</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

</KeyDescriptor>

<KeyDescriptor use="encryption">

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>MIIDMjCCAhqgAwIBAgIVAMX1YMhKc

xKp/uraKDAmWA6u1AjnMA0GCSqGSIb3DQEB

CwUAMB8xHTAbBgNVBAMMFGNhc2Rldi5uZXdzY2hvb2wuZWR1MB4XDTE3MTAyMzE4

MzQxN1oXDTM3MTAyMzE4MzQxN1owHzEdMBsGA1UEAwwUY2FzZGV2Lm5ld3NjaG9v

bC5lZHUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCGo/8pOKu2ECEQ

Install and test the IdP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 192

XxHedB1RVTa4DGM5BYsubhrp6ANSS9eym2pGUi6hMJVPgdTaI3pnPecC8sk9DnQ5

O/7C7/utdit86bvDc4hUTJ1+W1OY2GrfS1QGqU2PFE0CtiJWtQp+g8ypBbXzcP6W

Zz3DRJMe1Jt44/fNoCgRHeiNVBWs3v2oNlpmA8A2+g9RKA9slrS4YuTkXNoTUYgo

JuZSDNhu0sZFx1WYElOrWs7ry7NCO1lJrl38UOGt9RFsF/7XRXSx4df2Hkr+XrIz

sVigUlxt1PiL8F03nH3tPMh4eIinmZ3F0r0vrFhrsc7Rzwkty4Bu/xEkA4mDE85k

YHy2UwjrAgMBAAGjZTBjMB0GA1UdDgQWBBSaNMHTF540kZ9XPGUuLb5EIM409TBC

BgNVHREEOzA5ghRjYXNkZXYubmV3c2Nob29sLmVkdYYhY2FzZGV2Lm5ld3NjaG9v

bC5lZHUvaWRwL21ldGFkYXRhMA0GCSqGSIb3DQEBCwUAA4IBAQAzHson1VU4/ZdC

pDXIUMACmN+WZPrgGQ+Xd3w179X1VrYmmU2KrWTu3Wq+svn0aUbEcWY+dDs7wFK2

gYXAYI8p4RY37n+Z/m8MyipZDHqZ6bloNsfjJ7j+L7yxLC5AQKgUpUON1kvsainI

zwr/W4Q0udFQzX1qxI6b9EF23V+8r4Hkl105Xh3bgkX5c52qUy71BoBDNvxvWXfT

q6NiXFEIX821Jc57xjqOWyD7tdfLnY5Imkb1ZQ5GlHHlWR6UKuZojIuBwT9Fotha

dgmL7gvBapJdfV1aNaz1MfC6REKnE5P+SZboEBGWpe8pGFSBKvyNAnfzCKNycSzH

/k3s3wIp</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

</KeyDescriptor>

<!--

<ArtifactResolutionService Binding="urn:oasis:names:tc:SAM

L:1.0:bindings:SOAP-binding"

Location="https://casdev.newschoo

l.edu/cas/idp/profile/SAML1/SOAP/ArtifactResolution" index="1"/>

-->

<SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bin

dings:HTTP-POST" Location="https://casdev.newschool.edu/cas/idp/profi

le/SAML2/POST/SLO"/>

<NameIDFormat>urn:mace:shibboleth:1.0:nameIdentifier</NameIDF

ormat>

<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:trans

ient</NameIDFormat>

<SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bin

dings:HTTP-POST" Location="https://casdev.newschool.edu/cas/idp/profi

le/SAML2/POST/SSO"/>

<SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bin

dings:HTTP-POST-SimpleSign" Location="https://casdev.newschool.edu/ca

s/idp/profile/SAML2/POST-SimpleSign/SSO"/>

<SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bin

dings:HTTP-Redirect" Location="https://casdev.newschool.edu/cas/idp/p

rofile/SAML2/Redirect/SSO"/>

<SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bin

dings:SOAP" Location="https://casdev.newschool.edu/cas/idp/profile/SA

ML2/SOAP/ECP"/>

</IDPSSODescriptor>

Install and test the IdP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 193

<!--

<AttributeAuthorityDescriptor protocolSupportEnumeration="urn:oas

is:names:tc:SAML:1.1:protocol urn:oasis:names:tc:SAML:2.0:protocol">

<Extensions>

<shibmd:Scope regexp="false">newschool.edu</shibmd:Scope>

</Extensions>

<KeyDescriptor use="signing">

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>MIIDMjCCAhqgAwIBAgIVAJ52X1Nr0

7ZSRcD/sf+/sru29lnuMA0GCSqGSIb3DQEB

CwUAMB8xHTAbBgNVBAMMFGNhc2Rldi5uZXdzY2hvb2wuZWR1MB4XDTE3MTAyMzE4

MzQxNloXDTM3MTAyMzE4MzQxNlowHzEdMBsGA1UEAwwUY2FzZGV2Lm5ld3NjaG9v

bC5lZHUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC9Ewa1ETMNN0rF

mpzNZln2x638hQjX78T5F78nk0/K37aHXaOUH7AgQshFuDVct+QfApur4FRtJl/H

F+LMJRSastrZDnjFEBMkb4iVsXZVQ+H+UsPEyVmPYfzTjtNwJFLsQfNStNmHF7AG

y+/3WxTa0KZKXq2yzGKIy9cnvmqzvve2PVmBOhwn3zFiT0ZgY+RoWzQVtIzkFst/

OATUg2c93LucM0x6Ec7VAYrH6sgBNjiP3NfsXv49mJhTJXuAkeWo3wGApR6R4ezm

meUm0HrNCZQ6dTRDGl5qZmax0ltCS2iJnwtd8BUSvwzZT1YrX57Qg2jrMZoo+SHR

FpCrQu79AgMBAAGjZTBjMB0GA1UdDgQWBBSDv5Ny5w80rMMx/VwYv5lsTVqYqzBC

BgNVHREEOzA5ghRjYXNkZXYubmV3c2Nob29sLmVkdYYhY2FzZGV2Lm5ld3NjaG9v

bC5lZHUvaWRwL21ldGFkYXRhMA0GCSqGSIb3DQEBCwUAA4IBAQAmhBGB9wOMJhZa

K9g1cX8bk9AcVeJAbltx/MUjiyopj98zy0DuuhUVPT1F2c36FFYzMx5JrCOfIwOl

BbDHSiSCTUapjQe2+McvTH2/Cvi2lNJ4rjlZpIdINJdzwEcTUnJYnUnWoO0oPALM

/V/IHlzqBR+lOtcv1wW19+WYT+BLzNMKc/ThmK2kZK88dpyLCyrxfiv1Om3dYNGM

oM6d+kQLuxM+h3qhnFVo/Xg3GJEImXoAYPS8A165y8kTJOa6FuvTR9kjmLoZ5E+9

36HVMrpjJZZO/XduOZ7k5qN20wRYMMyA7Lf85hgKItEmTJe/McrQgthbRaSsgY5q

nrndd+52</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

</KeyDescriptor>

<AttributeService Binding="urn:oasis:names:tc:SAML:1.0:bindin

gs:SOAP-binding" Location="https://casdev.newschool.edu/cas/idp/profi

le/SAML1/SOAP/AttributeQuery"/>

<AttributeService Binding="urn:oasis:names:tc:SAML:2.0:bindin

gs:SOAP" Location="https://casdev.newschool.edu/cas/idp/profile/SAML

2/SOAP/AttributeQuery"/>

</AttributeAuthorityDescriptor>

-->

<!--

<Organization>

<OrganizationName xml:lang="en">Institution Name</Organizatio

nName>

<OrganizationDisplayName xml:lang="en">Institution DisplayNam

e</OrganizationDisplayName>

Install and test the IdP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 194

<OrganizationURL xml:lang="en">URL</OrganizationURL>

</Organization>

<ContactPerson contactType="administrative">

<GivenName>John Smith</GivenName>

<EmailAddress>jsmith@example.org</EmailAddress>

</ContactPerson>

<ContactPerson contactType="technical">

<GivenName>John Smith</GivenName>

<EmailAddress>jsmith@example.org</EmailAddress>

</ContactPerson>

<ContactPerson contactType="support">

<GivenName>IT Services Support</GivenName>

<EmailAddress>support@example.org</EmailAddress>

</ContactPerson>

-->

</EntityDescriptor>

casdev-master#

You should receive a relatively lengthy XML document back.

 Note: The -k option to curl tells it not to verify the SSL certificate of the

server; this is necessary because the server is identifying itself as

casdev.newschool.edu, not casdev-master.newschool.edu.

Copy CAS-generated IdP metadata to the overlay

template

When the CAS server was started with IdP support for the first time (above), it

generated IdP-specific signing and encryption keys and certificates to be used

when communicating with SAML2 clients. The server wrote copies of these keys

and certificates, as well as the IdP metadata, to files in /etc/cas/saml :

casdev-master# ls -asl /etc/cas/saml

total 28

4 drwxrwx---. 2 root tomcat 4096 Mmm dd hh:mm .

0 drwxr-x---. 5 root tomcat 45 Mmm dd hh:mm ..

4 -rw-rw----. 1 tomcat tomcat 1168 Mmm dd hh:mm idp-encryption.crt

4 -rw-rw----. 1 tomcat tomcat 1675 Mmm dd hh:mm idp-encryption.key

8 -rw-rw----. 1 tomcat tomcat 7383 Mmm dd hh:mm idp-metadata.xml

4 -rw-rw----. 1 tomcat tomcat 1168 Mmm dd hh:mm idp-signing.crt

4 -rw-rw----. 1 tomcat tomcat 1679 Mmm dd hh:mm idp-signing.key

casdev-master#

Install and test the IdP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 195

To make sure that these files are the same across all the CAS servers (so that any

back-end server can talk to any client), copy them into the overlay template’s etc/

cas directory:

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# cp /etc/cas/saml/idp-* etc/cas/saml

Install on the CAS servers

Once everything seems to be running correctly on the master build server (further

testing will have to wait until we build the SAML client (page 199)), copy the

updated Tomcat settings to the CAS servers:

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /etc/tomcat/server.xml casdev-${host}:/etc/tomcat/server.xml

> done

casdev-master#

Then copy the new CAS application files to the CAS servers using the scripts

created earlier (page 99):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Check that the IdP is working on the CAS servers

Use the curl command again to check that the IdP is working on the CAS

servers. This time the -k option is not necessary:

Install and test the IdP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 196

casdev-master# curl https://casdev.newschool.edu/cas/idp/metadata

(XML output)

casdev-master#

Install and test the IdP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 197

Commit changes to Git
Before moving on to building the SAML client, commit the changes made to

pom.xml , as well as the new etc/cas/saml directory and the IdP-specific service

definition, to Git to make them easier to keep track of (and to enable reverting to

earlier configurations easier). Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/saml

casdev-master# git add pom.xml

casdev-master# git add etc/cas/services/SAML2CallbackProfile-15090297

45.json

casdev-master# git commit -m "Added SAML IdP support"

[newschool-casdev 3bf73e3] Added SAML IdP support

6 files changed, 224 insertions(+)

create mode 100644 etc/cas/saml/idp-encryption.crt

create mode 100644 etc/cas/saml/idp-encryption.key

create mode 100644 etc/cas/saml/idp-metadata.xml

create mode 100644 etc/cas/saml/idp-signing.crt

create mode 100644 etc/cas/saml/idp-signing.key

create mode 100644 etc/cas/services/SAML2CallbackProfile-150902974

5.json

casdev-master#

on the master build server (casdev-master).

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 198

Building the SAML client

Summary: To facilitate development and testing, a client application

that interacts with the CAS server via SAML is needed.

Now that SAML2 Identity Provider (IdP) support has been added to the CAS server

(page 181), we can build a Service Provider (SP) client application to talk to it.

Our SP will be an Apache HTTPD web server that offers both public content that

anyone can access, and “secure” content that can only be accessed by

authenticated and authorized users. The IdP functionality of the CAS server will be

used to perform those authentication and authorization decisions.

Building the SAML client PDF last generated: October 18, 2018

Deploying Apereo CAS Page 199

Install the Shibboleth SP
The Shibboleth Service Provider (SP) allows an Apache web server to interact with

a SAML Identity Provider (IdP) via the SAML2 protocol. The SP is comprised of an

Apache HTTPD module (mod_shib) and a system daemon (shibd) that handles

state management and most of the actual SAML processing (the module

communicates with the daemon; the daemon communicates with the IdP). Red Hat

does not offer this software, but the Shibboleth Consortium uses the OpenSUSE

Build Service to distribute its packages, so we can still install it with yum .

 Note: The steps in this section should be performed on the client server

(casdev-samlsp), not the master build server (casdev-master).

Add the Shibboleth repository to yum

Before we can use yum to install the Shibboleth SP, we have to teach it about the

Shibboleth repository from the OpenSUSE Build Service. Run the command

casdev-samlsp# curl http://download.opensuse.org/repositories/securit

y:/shibboleth/CentOS_7/security:shibboleth.repo -o /etc/yum.repos.d/s

ecurity\:shibboleth.repo

% Total % Received % Xferd Average Speed Time Time Tim

e Current

Dload Upload Total Spent Lef

t Speed

100 266 100 266 0 0 1225 0 --:--:-- --:--:--

--:--:-- 1231

casdev-samlsp#

to download the repo configuration file.

 Important: From the Shibboleth Wiki : “A special note applies to Red Hat 7

and probably all future versions: because of Red Hat’s licensing restrictions,

it’s now impossible for the build service to target Red Hat 7 directly. However,

CentOS is an identical system, and the packages for it work on the equivalent

Red Hat versions, so Red Hat 7 deployments should rely on the CentOS 7

package repository.”

Install the Shibboleth SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 200

https://build.opensuse.org/
https://build.opensuse.org/
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPLinuxRPMInstall

Install the Shibboleth SP

Install the Shibboleth SP and its dependencies by running the commands

casdev-samlsp# yum -y install shibboleth

Create a TLS/SSL certificate for the SP

The SP uses its own TLS/SSL certificate for signing and encrypting

communications with the IdP. Run the commands

casdev-samlsp# cd /etc/shibboleth

casdev-samlsp# ./keygen.sh -h casdev-samlsp.newschool.edu -e http

s://casdev.newschool.edu/shibboleth -f -u shibd -y 10

Generating a 3072 bit RSA private key

.........++

...++

writing new private key to './sp-key.pem'

casdev-samlsp#

Any error messages about being unable to remove ./sp-key.pem or ./sp-

cert.pem may be safely ignored.

Configure systemd to start shibd

RHEL 7 uses systemd to manage system resources. Run the command

casdev-samlsp# systemctl enable shibd

to enable the shibd service in systemd . This will cause systemd to start shibd

at system boot time. Additionally, the following commands may now be used to

manually start, stop, restart, and check the status of the shibd service:

Install the Shibboleth SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 201

systemctl start shibd

systemctl stop shibd

systemctl restart shibd

systemctl status shibd

Test that HTTPD and shibd can communicate

Before configuring the SP further, check that Apache HTTP and shibd are able to

communicate. Run the commands

casdev-samlsp# systemctl start shibd

casdev-samlsp# systemctl restart HTTPD

to start the shibd daemon and restart HTTPD to load the mod_shib module. Then

use curl to retrieve the SP’s status page:

Install the Shibboleth SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 202

casdev-samlsp# curl -k https://127.0.0.1/Shibboleth.sso/Status

<StatusHandler time='2017-10-25T19:12:42Z'><Version Xerces-C='3.1.1'

XML-Tooling-C='1.6.0' XML-Security-C='1.7.3' OpenSAML-C='2.6.0' Shibb

oleth='2.6.0'/><NonWindows sysname='Linux' nodename='casdev-samlsp.ne

wschool.edu' release='3.10.0-693.2.2.el7.x86_64' version='#1 SMP Sat

Sep 9 03:55:24 EDT 2017' machine='x86_64'/><SessionCache><OK/></Sessi

onCache><Application id='default' entityID='https://sp.example.org/sh

ibboleth'/><Handlers><Handler type='ArtifactResolutionService' Locati

on='/Artifact/SOAP' Binding='urn:oasis:names:tc:SAML:2.0:bindings:SOA

P'/><Handler type='AssertionConsumerService' Location='/SAML2/POST' B

inding='urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST'/><Handler typ

e='AssertionConsumerService' Location='/SAML2/POST-SimpleSign' Bindin

g='urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST-SimpleSign'/><Handl

er type='AssertionConsumerService' Location='/SAML2/Artifact' Bindin

g='urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact'/><Handler typ

e='AssertionConsumerService' Location='/SAML2/ECP' Binding='urn:oasi

s:names:tc:SAML:2.0:bindings:PAOS'/><Handler type='AssertionConsumerS

ervice' Location='/SAML/POST' Binding='urn:oasis:names:tc:SAML:1.0:pr

ofiles:browser-post'/><Handler type='AssertionConsumerService' Locati

on='/SAML/Artifact' Binding='urn:oasis:names:tc:SAML:1.0:profiles:art

ifact-01'/><Handler type='SessionInitiator' Location='/Login'/><Handl

er type='SingleLogoutService' Location='/SLO/SOAP' Binding='urn:oasi

s:names:tc:SAML:2.0:bindings:SOAP'/><Handler type='SingleLogoutServic

e' Location='/SLO/Redirect' Binding='urn:oasis:names:tc:SAML:2.0:bind

ings:HTTP-Redirect'/><Handler type='SingleLogoutService' Location='/S

LO/POST' Binding='urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST'/><H

andler type='SingleLogoutService' Location='/SLO/Artifact' Binding='u

rn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact'/><Handler type='Lo

goutInitiator' Location='/Logout'/><Handler type='MetadataGenerator'

Location='/Metadata'/><Handler type='Status' Location='/Status'/><Han

dler type='Session' Location='/Session'/><Handler type='DiscoveryFee

d' Location='/DiscoFeed'/></Handlers><md:KeyDescriptor xmlns:md="ur

n:oasis:names:tc:SAML:2.0:metadata" use="signing"><ds:KeyInfo xmlns:d

s="http://www.w3.org/2000/09/xmldsig#"><ds:KeyName>casdev-samlsp.news

chool.edu</ds:KeyName><ds:KeyName>https://casdev.newschool.edu/shibbo

leth</ds:KeyName><ds:X509Data><ds:X509SubjectName>CN=casdev-samlsp.ne

wschool.edu</ds:X509SubjectName><ds:X509Certificate>MIIEQTCCAqmgAwIBA

gIJAJgyfve+2p4MMA0GCSqGSIb3DQEBCwUAMCYxJDAiBgNV

BAMTG2Nhc2Rldi1zYW1sc3AubmV3c2Nob29sLmVkdTAeFw0xNzEwMjUxOTA5NTNa

Fw0yNzEwMjMxOTA5NTNaMCYxJDAiBgNVBAMTG2Nhc2Rldi1zYW1sc3AubmV3c2No

b29sLmVkdTCCAaIwDQYJKoZIhvcNAQEBBQADggGPADCCAYoCggGBAKnAVWGK7S1f

nmL41kvXlU9l2BDQNKEpoEnu428Bg8Az/5e1wxs2eMk9XymPobEJ5LlT0Fyr4nSl

NqRSHkCOFdoll+W8qfqn3AxgYaGDccU+JREp2uz8FYDpAwFsC/3bGWVrKW6aUW6T

sAoQwdcL2XlokQ3NkdwimYv6gB2sP8kNje7G8gl1kEodu6QucDwChvHHTF5MQuPz

5L2iWBif2ZFBE7+AokIYL3rZCUSVviq6e77hJ2p0l4Rtx2I20AaHKaOFGITwtELx

mIVzJ9747lEq6xV9VeFFG7wmJqFioy39hPoKL9rtMhkGg78LsX6famSjYqUW12qs

QjyazOUd0ve3C8WBX/PVIA3I3WpQTpgT/xIZSbuHUa7fYE5+BRvcZOaRVk6WfHja

Install the Shibboleth SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 203

ABCx43D5f6FPHj3pfcsGZzKrT26QJYeIIcNgsgH+KQAszjfIYF1iJNCkJQGGkbQX

DL+Fvr7PaLOWjf31A85KSHWXe9F7cFovwk+l6Q8RuT4al8sL9ibYcwIDAQABo3Iw

cDBPBgNVHREESDBGghtjYXNkZXYtc2FtbHNwLm5ld3NjaG9vbC5lZHWGJ2h0dHBz

Oi8vY2FzZGV2Lm5ld3NjaG9vbC5lZHUvc2hpYmJvbGV0aDAdBgNVHQ4EFgQUlo8B

+EW+irsywPjzuc8cBeLvXU8wDQYJKoZIhvcNAQELBQADggGBAKh7J3VZAYNs5Lr3

ox7rvz9Vhx5ZzvZ28j6TlTFvtbh4OSNYlP3G3o627MtORY/bPzm63bQrfq53OTOf

JiqMENEOGXrqBbFqRfR32P75BWfXsh2ZSxdGXU6O9czFpjrycAKZgWv9U2OYFpyb

m14RzSqQq34pyL8nScJ2dO5cK/Ei5SeL76U8Jf68fVVhL6eEZ3eV93jtUafLW4r6

ouiO9v26d+W6hnzk5R0ntitNgkCudcpFH/heDXawbxhXOkEHbAQ1ggqdE/vnWVfx

PKxvhKw6UW1PsaYoy+yiXwzX3rIxLGTfnqJ8cdb4gjDE8tXOxMjVdbWeFTY5aDWG

Nv9KkJ9W5dEz1s91enceM9XzINvca2d/qa7hflEEHnWNhXKIQ8BEXKjEPFFkcclo

r5hpkVNVVGEC2ZA1nSQlrDBMpf/3uDgPxVh474vuDTJHvcEXpfNqEITBdxO2t7dV

HGiljHQvACTaqHAL0sYUpZPVk3CE2RV+B0m3jugIlnT3VB7tFQ==

</ds:X509Certificate></ds:X509Data></ds:KeyInfo></md:KeyDescriptor><m

d:KeyDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata" us

e="encryption"><ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsi

g#"><ds:KeyName>casdev-samlsp.newschool.edu</ds:KeyName><ds:KeyName>h

ttps://casdev.newschool.edu/shibboleth</ds:KeyName><ds:X509Data><ds:X

509SubjectName>CN=casdev-samlsp.newschool.edu</ds:X509SubjectName><d

s:X509Certificate>MIIEQTCCAqmgAwIBAgIJAJgyfve+2p4MMA0GCSqGSIb3DQEBCwU

AMCYxJDAiBgNV

BAMTG2Nhc2Rldi1zYW1sc3AubmV3c2Nob29sLmVkdTAeFw0xNzEwMjUxOTA5NTNa

Fw0yNzEwMjMxOTA5NTNaMCYxJDAiBgNVBAMTG2Nhc2Rldi1zYW1sc3AubmV3c2No

b29sLmVkdTCCAaIwDQYJKoZIhvcNAQEBBQADggGPADCCAYoCggGBAKnAVWGK7S1f

nmL41kvXlU9l2BDQNKEpoEnu428Bg8Az/5e1wxs2eMk9XymPobEJ5LlT0Fyr4nSl

NqRSHkCOFdoll+W8qfqn3AxgYaGDccU+JREp2uz8FYDpAwFsC/3bGWVrKW6aUW6T

sAoQwdcL2XlokQ3NkdwimYv6gB2sP8kNje7G8gl1kEodu6QucDwChvHHTF5MQuPz

5L2iWBif2ZFBE7+AokIYL3rZCUSVviq6e77hJ2p0l4Rtx2I20AaHKaOFGITwtELx

mIVzJ9747lEq6xV9VeFFG7wmJqFioy39hPoKL9rtMhkGg78LsX6famSjYqUW12qs

QjyazOUd0ve3C8WBX/PVIA3I3WpQTpgT/xIZSbuHUa7fYE5+BRvcZOaRVk6WfHja

ABCx43D5f6FPHj3pfcsGZzKrT26QJYeIIcNgsgH+KQAszjfIYF1iJNCkJQGGkbQX

DL+Fvr7PaLOWjf31A85KSHWXe9F7cFovwk+l6Q8RuT4al8sL9ibYcwIDAQABo3Iw

cDBPBgNVHREESDBGghtjYXNkZXYtc2FtbHNwLm5ld3NjaG9vbC5lZHWGJ2h0dHBz

Oi8vY2FzZGV2Lm5ld3NjaG9vbC5lZHUvc2hpYmJvbGV0aDAdBgNVHQ4EFgQUlo8B

+EW+irsywPjzuc8cBeLvXU8wDQYJKoZIhvcNAQELBQADggGBAKh7J3VZAYNs5Lr3

ox7rvz9Vhx5ZzvZ28j6TlTFvtbh4OSNYlP3G3o627MtORY/bPzm63bQrfq53OTOf

JiqMENEOGXrqBbFqRfR32P75BWfXsh2ZSxdGXU6O9czFpjrycAKZgWv9U2OYFpyb

m14RzSqQq34pyL8nScJ2dO5cK/Ei5SeL76U8Jf68fVVhL6eEZ3eV93jtUafLW4r6

ouiO9v26d+W6hnzk5R0ntitNgkCudcpFH/heDXawbxhXOkEHbAQ1ggqdE/vnWVfx

PKxvhKw6UW1PsaYoy+yiXwzX3rIxLGTfnqJ8cdb4gjDE8tXOxMjVdbWeFTY5aDWG

Nv9KkJ9W5dEz1s91enceM9XzINvca2d/qa7hflEEHnWNhXKIQ8BEXKjEPFFkcclo

r5hpkVNVVGEC2ZA1nSQlrDBMpf/3uDgPxVh474vuDTJHvcEXpfNqEITBdxO2t7dV

HGiljHQvACTaqHAL0sYUpZPVk3CE2RV+B0m3jugIlnT3VB7tFQ==

</ds:X509Certificate></ds:X509Data></ds:KeyInfo></md:KeyDescriptor><S

tatus><OK/></Status></StatusHandler>

casdev-samlsp#

Install the Shibboleth SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 204

The details of the XML document returned by this command aren’t terribly

important since the SP hasn’t been configured yet.

 Note: The status page is protected by an IP address ACL, so the curl

command must be run from the server against the localhost IP address

(127.0.0.1). The -k option to curl is also needed, since the server’s SSL

certificate is advertising a different host name.

References

• Shibboleth SP: NativeSPLinuxRPMInstall

• ShibInstallFest: Linux Service Provider (RHEL 7.0)

Install the Shibboleth SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 205

https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPLinuxInstall
https://spaces.internet2.edu/pages/viewpage.action?pageId=30245422

Configure HTTPD to use the SP
Now that the Shibboleth SP has been installed, the mod_shib Apache HTTPD

module can be configured and some web content can be created to secure with it.

 Note: The steps in this section should be performed on the client server

(casdev-samlsp), not the master build server (casdev-master).

Configure mod_shib settings

Edit the file /etc/httpd/conf.d/shib.conf (installed as part of the yum package)

and locate the <Location> tag (around line 49), which should look something like

this:

<Location /secure>

Change the path of the directory to be secured to /secured-by-saml :

<Location /secured-by-saml>

Restart HTTPD

Run the command

casdev-samlsp# systemctl restart httpd

to restart the HTTPD server with the new configuration.

Create example content

Edit the file /var/www/html/index.php and replace the call to phpinfo() with

another link, like this:

Configure HTTPD to use the SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 206

<!DOCTYPE html>

<html lang="en">

<head>

<title>Hello, World!</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scal

e=1">

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.m

in.css">

</head>

<body>

<div class="container">

<h1>Hello, World!</h1>

<p><big>The quick brown fox jumped over the lazy dogs.</bi

g></p>

<p><big>Click here fo

r some

content secured by username and password.</big></p>

</div>

</body>

</html>

Then create a directory, /var/www/html/secured-by-saml , and create the file

/var/www/html/secured-by-saml/index.php with the following contents:

Configure HTTPD to use the SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 207

<!DOCTYPE html>

<html lang="en">

<head>

<title>Hello, World!</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scal

e=1">

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.m

in.css">

</head>

<body>

<div class="container">

<h1>Secured Content</h1>

<p><big>This is some secure content. You should not be able to

see it

until you have entered your username and password.</big></p>

<h2>Attributes Returned by SAML</h2>

<?php

echo "<pre>";

if (array_key_exists('REMOTE_USER', $_SERVER)) {

echo "REMOTE_USER = " . $_SERVER['REMOTE_USER'] . "
";

}

foreach ($_SERVER as $key => $value) {

if (strpos($key, 'SAML_') === 0) {

echo substr($key, 5) . " = " . $value . "
";

}

}

echo "</pre>";

?>

</div>

</body>

</html>

The PHP code here will display environment variables that are used by mod_shib

to pass attributes returned by the SAML IdP along to the web application.

Configure HTTPD to use the SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 208

Configure the SP
Now that the Shibboleth SP has been installed, the shibd daemon can be

configured to communicate with the CAS SAML IdP.

 Note: The steps in this section should be performed on the client server

(casdev-samlsp), not the master build server (casdev-master).

Configure the SAML entity and IdP settings

Edit the file /etc/shibboleth/shibboleth2.xml and make the changes described

below to set the SP’s entityID (the string the SP uses to identify itself to the IdP)

and tell it which IdP to use.

Set the entityID

Locate the <ApplicationDefaults> XML tag (around line 23) and change the

value of the entityID attribute to reflect the URL of the SAML client host (casdev-

samlsp.newschool.edu).

<ApplicationDefaults entityID="https://casdev-samlsp.newschool.edu/sh

ibboleth"

REMOTE_USER="eppn persistent-id targeted-id">

Set the REMOTE_USER attribute and attribute prefix

On the next line, change the value of the REMOTE_USER attribute to uid , and add a

new attribute, attributePrefix , as shown:

<ApplicationDefaults entityID="https://casdev-samlsp.newschool.edu/sh

ibboleth"

REMOTE_USER="uid" attributePrefix="SAML_">

The REMOTE_USER attribute specifies which user attribute, returned by the IdP,

should be used to populate the REMOTE_USER environment variable for the web

application to access. The attributePrefix attribute specifies a prefix string to be

applied to all the environment variables set by the mod_shib plugin, including the

environment variables containing user attribute values.

Configure the SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 209

Configure session security

Locate the <Sessions> XML tag (around line 35) and make sure the value of the

handlerSSL attribute is set to true , and the value of the cookieProps attribute is

set to https :

<Sessions lifetime="28800" timeout="3600" relayState="ss:mem"

checkAddress="false" handlerSSL="true" cookieProps="https">

These settings will ensure that all sessions between the SP and the IdP are

encrypted with TLS/SSL, and that cookies cannot be exchanged over insecure

channels.

Point the SP to the IdP

Locate the <SSO> XML tage (around line 44) and change the value of the

entityID attribute to the URL of the CAS SAML IdP. Delete the

discoveryProtocol and discoveryURL attributes; they are not needed for this

configuration.

<SSO entityID="https://casdev.newschool.edu/cas/idp">

SAML2 SAML1

</SSO>

Tell the SP where to get the IdP’s metadata

Locate the (commented out) examples of MetadataProvider definitions (around

lines 73-90), and insert the following below them:

<MetadataProvider type="XML" validate="true"

uri="https://casdev.newschool.edu/cas/idp/metadata"

backingFilePath="casdev-metadata.xml" reloadInterval="7200">

</MetadataProvider>

This tells the SP what URL to use to obtain the IdP’s metadata, gives it a file name

in which to store it, and a time limit after which it should be reloaded from the

server. (The metadata backing file will be stored in /var/cache/shibboleth .)

Configure the SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 210

Configure attribute processing

A SAML IdP sends user attributes to a SAML SP in the form of SAML assertions.

To avoid misinterpretation, every attribute has a unique identifier, agreed upon by

standards-setting bodies. This identifier (name) is different from the attribute names

used by back-end data stores and consuming applications. For example, a

telephone number might be returned from the IdP as follows:

<saml:Attribute FriendlyName="telephoneNumber" Name="urn:oid:2.5.4.2

0"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">

<saml:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xs:string">555-5555</saml:AttributeValue>

</saml:Attribute>

Although the back-end data store from which the IdP obtained the attribute (e.g.,

an LDAP directory) might refer to this attribute as a telephoneNumber , a

consuming application might call it telephoneNumber or telephone or phone or

something else. Therefore, to make sure that IdPs and SPs know that they’re

talking about the same thing, the [SAML V2.0 LDAP/X.500 Attribute

Profile][https://wiki.oasis-open.org/security/SstcSaml2AttributeX500Profile]

specifies that this attribute should be identified as urn:oid:2.5.4.20 (similar

values are defined for other common LDAP attributes).

To map between the standard attribute names used by the IdP and SP and the

“friendly” attribute names used by applications, the Shibboleth SP uses a file called

/etc/shibboleth/attribute-map.xml , which contains definitions like this:

<Attribute name="urn:oid:2.5.4.20" id="telephoneNumber"/>

<Attribute name="urn:mace:dir:attribute-def:telephoneNumber" id="tele

phoneNumber"/>

The urn:mace attribute namespace is another namespace, registered with the

IETF and IANA, for Internet2’s Middleware Architecture Committee for Education. It

is heavily used by Internet2 and InCommon member organizations.

Configure the SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 211

Enable LDAP attribute mappings

To enable the pre-defined LDAP attribute mappings in the SP, edit the file /etc/

shibboleth/attribute-map.xml and remove the comment lines (<-- and -->)

around the section labeled “Examples of LDAP-based attributes” (around lines

92-149).

Add custom attribute mappings

When we configured attribute resolution (page 144) in the CAS server, we

configured a number of standard LDAP attributes, but also a couple of non-

standard ones, role and UDC_IDENTIFIER . To tell the Shibboleth SP how to

process these attributes, edit the file /etc/shibboleth/attrbute-map.xml and add

the following lines to the end (before the </Attributes> XML close tag):

<Attribute name="urn:newschool:attribute-def:role" id="role"/>

<Attribute name="urn:newschool:attribute-def:UDC_IDENTIFIER" id="UD

C_IDENTIFIER"/>

We cannot use the urn:oid or urn:mace namespaces, since those are controlled

by standards bodies. So instead, we define our own namespace, urn:newschool ,

modeled after urn:mace .

Restart shibd

Run the command

casdev-samlsp# systemctl restart shibd

to restart the Shibboleth daemon with the new configuration.

References

• Shibboleth SP: NativeSPConfiguration

• ShibInstallFest: Linux Service Provider (RHEL 7.0)

• Shibboleth: AttributeNaming

Configure the SP PDF last generated: October 18, 2018

Deploying Apereo CAS Page 212

https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPConfiguration
https://spaces.internet2.edu/pages/viewpage.action?pageId=30245422
https://wiki.shibboleth.net/confluence/display/SHIB2/AttributeNaming

Update the service registry
Just like CAS-enabled services, SAML-enabled services must be defined in the

service registry.

Create a service definition for the SAML client

Create the file etc/cas/services/ApacheSecuredBySAML-1509030300.json (replace

1509030300 with the current date +%s or YYYYMMDDhhmmss value) in the cas-

overlay-template directory on the master build server (casdev-master) with the

following contents:

{

"@class" : "org.apereo.cas.support.saml.services.SamlRegisteredServ

ice",

"serviceId" : "https://casdev-samlsp.newschool.edu/shibboleth",

"name" : "Apache Secured By SAML",

"id" : 1509030300,

"description" : "CAS development Apache mod_shib/shibd server with

username/password protection",

"metadataLocation" : "https://casdev-samlsp.newschool.edu/Shibbolet

h.sso/Metadata",

"attributeReleasePolicy" : {

"@class" : "org.apereo.cas.services.ReturnMappedAttributeReleaseP

olicy",

"allowedAttributes" : {

"@class" : "java.util.TreeMap",

"cn" : "urn:oid:2.5.4.3",

"displayName" : "urn:oid:2.16.840.1.113730.3.1.241",

"givenName" : "urn:oid:2.5.4.42",

"mail" : "urn:oid:0.9.2342.19200300.100.1.3",

"role" : "urn:newschool:attribute-def:role",

"sn" : "urn:oid:2.5.4.4",

"uid" : "urn:oid:0.9.2342.19200300.100.1.1",

"UDC_IDENTIFIER": "urn:newschool:attribute-def:UDC_IDENTIFIER"

}

},

"evaluationOrder" : 1125

}

This is similar to the service definitions created previously, but there are some

differences:

1. The @class of the service is

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 213

org.apereo.cas.support.saml.services.SamlRegisteredService rather

than org.apereo.cas.services.RegexRegisteredService .

2. The serviceId is specified as an exact-match string, not a regular

expression. Specifically, this attribute must be equal to the entityID of the

service.

3. The new attribute, metadataLocation , is used to tell the IdP where it can

obtain the SP’s metadata. This will be automatically retrieved and stored in

/etc/cas/saml/metadata-backups/ when the SP first connects to the IdP.

For SPs that do not provide a URL from which to obtain metadata, the

metadata can be obtained by other means (e.g., email from the service

provider) and saved to a file which can then be identified in this attribute

with a file: URI.

4. The ReturnMappedAttributeReleasePolicy is used to assign the SAML-

specific attribute names expected by the SP to the attributes. The values

to be used here can be obtained from the SP’s /etc/shibboleth/

attribute-map.xml file.

References

• CAS 5: JSON Service Registry

• CAS 5: SAML2 Authentication

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 214

https://apereo.github.io/cas/5.2.x/installation/JSON-Service-Management.html
https://apereo.github.io/cas/5.2.x/installation/Configuring-SAML2-Authentication.html

Install and test the application
Before the SAML client application can be used, the the updated CAS server

configuration files must be installed. Then everything can be tested by accessing

the “public” part of the client application web site and then clicking on the link to the

“secure” section. At that point, the browser should be redirected to the CAS server,

where upon successful authentication the secure content, including the values of

the attributes, will be displayed.

Because both the load balancer and the CAS server use cookies, it’s usually best

to perform testing with an “incognito” or “private browsing” instance of the web

browser that deletes all cookies each time it is closed.

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS configuration files on the master build server (casdev-master):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the scripts created earlier (page 99):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 215

Shut down all but one of the pool servers

Operating CAS with a pool of servers instead of a single server requires special

configuration. Because that configuration hasn’t been completed yet, testing must

be performed against a single server. Therefore, the other servers in the pool

should be shut down so that the load balancer will direct all traffic to that single

server. Run the command

systemctl stop tomcat

on all but one of the CAS servers (casdev-srvXX) to temporarily take those

servers out of the pool.

Access the public site

Open up a web browser (in “incognito” or “private browsing” mode) and enter the

URL of the SAML-enabled web site:

https://casdev-samlsp.newschool.edu/

The contents of /var/www/html/index.php should be displayed, looking

something like this:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 216

Figure 18. The "public" site

Access the secure area

Click on the “here” link to access the secure content, and you will be redirected to

the CAS server login page, as shown below:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 217

Figure 19. The CAS login page

Note that the contents of the name field from the service registry are displayed at

the top of the right-hand column; make sure that Apache Secured by SAML is

displayed here. Enter a valid username and password (Active Directory or LDAP)

that is also registered with Duo and, upon successful authentication, the contents

of /var/www/html/secured-by-saml/index.php will be displayed:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 218

Figure 20. The "secure" content

Restart the pool servers

One testing is complete, run the command

systemctl start tomcat

on each of the pool servers shut down previously.

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 219

Adding MFA to SAML authentication
Adding a multi-factor authentication flow to a SAML-authenticated service is as

easy as editing the service registry definition to add the multifactorPolicy

directive. For example, the service registry definition file created in this chapter

would look like this with Duo multi-factor authentication added:

{

"@class" : "org.apereo.cas.support.saml.services.SamlRegisteredServ

ice",

"serviceId" : "https://casdev-samlsp.newschool.edu/shibboleth",

"name" : "Apache Secured By SAML",

"id" : 20171026110500,

"description" : "CAS development Apache mod_shib/shibd server with

username/password protection",

"metadataLocation" : "https://casdev-samlsp.newschool.edu/Shibbolet

h.sso/Metadata",

"attributeReleasePolicy" : {

"@class" : "org.apereo.cas.services.ReturnMappedAttributeReleaseP

olicy",

"allowedAttributes" : {

"@class" : "java.util.TreeMap",

"cn" : "urn:oid:2.5.4.3",

"displayName" : "urn:oid:2.16.840.1.113730.3.1.241",

"givenName" : "urn:oid:2.5.4.42",

"mail" : "urn:oid:0.9.2342.19200300.100.1.3",

"role" : "urn:newschool:attribute-def:role",

"sn" : "urn:oid:2.5.4.4",

"uid" : "urn:oid:0.9.2342.19200300.100.1.1",

"UDC_IDENTIFIER": "urn:newschool:attribute-def:UDC_IDENTIFIER"

}

},

"multifactorPolicy" : {

"@class" : "org.apereo.cas.services.DefaultRegisteredServiceMulti

factorPolicy",

"multifactorAuthenticationProviders" : ["java.util.LinkedHashSe

t", ["mfa-duo"]]

},

"evaluationOrder" : 1125

}

Adding MFA to SAML authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 220

Testing SAML and MFA together

In the service registry, CAS-enabled services are identified by URL. Thus, we were

able to create CAS-only and CAS-plus-MFA services on the CAS client server

simply by creating different directories in /var/www/html , resulting in two different

URLs and two different service registry definitions, one with MFA enabled and one

without.

SAML services are a little different, though. They’re identified by an entityID, and

generally there’s only one entityID per application (recall that this value was set in

the SP’s configuration file, /etc/shibboleth/shibboleth2.xml). Thus, simply

creating a second directory in /var/www/html won’t work in and of itself, because

the SP software will present the same entityID to the CAS SAML IdP for both

directories. It is possible to configure the Shibboleth SP to present different entityID

values under different conditions (such as different directories), but doing so is a

complicated, multi-step undertaking that frankly isn’t worth the effort.

Instead, to test SAML and MFA together, just add the multifactorPolicy attribute

to the existing service definition and test. To disable MFA, just comment that part of

the definition out:

/*

"multifactorPolicy" : {

"@class" : "org.apereo.cas.services.DefaultRegisteredServiceMultifa

ctorPolicy",

"multifactorAuthenticationProviders" : ["java.util.LinkedHashSe

t", ["mfa-duo"]]

},

*/

References

• CAS 5: Duo Security Authentication

• CAS 5: Configuration Properties: Multi-factor Authentication

Adding MFA to SAML authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 221

https://apereo.github.io/cas/5.2.x/installation/DuoSecurity-Authentication.html
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#multifactor-authentication

Commit changes to Git
Before moving on to building the SAML client, commit the new service registry

definition file to Git to make changes easier to keep track of (and to enable

reverting to earlier configurations easier). Run the commands

casdev-master# git add etc/cas/services/ApacheSecuredBySAML-150903030

0.json

casdev-master# git commit -m "Set up SAML client"

[newschool-casdev 6ad660c] Set up SAML client

1 file changed, 29 insertions(+)

create mode 100644 etc/cas/services/ApacheSecuredBySAML-1509030300.j

son

casdev-master#

on the master build server (casdev-master).

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 222

Enabling the dashboard (admin pages)

Summary: The dashboard will be enabled to support server

administration and monitoring.

CAS 5 provides about two dozen endpoints under the

${cas.server.prefix}/status/ URL that allow administrators, permissions

granting, to obtain real-time configuration data and performance monitoring

statistics, and also make configuration changes. It also provides a rudimentary

dashboard interface through which these endpoints can be accessed, as shown in

Figure 21.

Figure 21. The dashboard

Some of the more “interesting” endpoints include:

• Status – A quick text-only summary of the server’s health, number of

sessions, memory usage, host name, server name, and CAS version.

• Configuration Properties – A JSON-formatted dump of all the CAS

Enabling the dashboard (admin pages) PDF last generated: October 18, 2018

Deploying Apereo CAS Page 223

configuration properties and their current values.

• Statistics Panel – A dashbnoard-like display of expired and unexpired

tickets, JVM statistics, and other information.

• SSO Sessions – A dashboard-like display of current active sessions,

including usernames, tickets, authentication times, etc.

• Registered Services – A JSON-formatted dump of the service registry

(the management webapp (page 236) will provide a better representation

of this information).

• Attribute Resolution and Release – An interactive interface to test

attribute resolution for individual users, and attribute release to specific

services.

As of this writing, most of the endpoints don’t do anything beyond print information

in raw JSON format. However, even this can be useful for examining the current

server state, although it may require copying-and-pasting the output into a JSON

pretty-printer (such as Code Beautify) to make any sense of it.

References

• CAS 5: Monitoring and Statistics

Enabling the dashboard (admin pages) PDF last generated: October 18, 2018

Deploying Apereo CAS Page 224

https://codebeautify.org/jsonviewer
https://apereo.github.io/cas/5.2.x/installation/Monitoring-Statistics.html

Configure admin pages properties
There are two types of endpoints supported by the CAS server, those that can be

viewed and managed via the dashboard only, and those that can also be viewed

and managed with the Spring Boot Administration server. Since we will not be

using the Spring Boot Administration server in our deployment, the distinction is

somewhat unimportant, except that it introduces a few extra configuration settings.

Enable all the endpoints

Edit the file etc/cas/config/cas.properties in the cas-overlay-template

directory on the master build server (casdev-master) and add the following lines to

enable the endpoints:

cas.adminPagesSecurity.actuatorEndpointsEnabled: true

cas.monitor.endpoints.enabled: true

endpoints.enabled: true

This will enable both the CAS-style endpoints and the Spring Boot-style endpoints.

The above settings apply globally to all the endpoints; it is also possible to enable

and disable each endpoint individually; see the configuration property references

below.

Configure endpoint security

The top-level /status endpoint is always secured by an IP address pattern

(regular expression). If no other security is configured, all the endpoints underneath

/status are also secured by that pattern. The endpoints underneath /status

may also be secured by the CAS server itself, just like any other CAS-enabled

service, or they may secured with Spring Security, which supports basic

authentication (master username and password), database-based authentication,

LDAP-based authentication, and other methods. If neither CAS nor Spring Security

are configured to secure the endpoints underneath /status , then their security will

rely solely on the IP addrees pattern as well.

For our installation, we will use the IP address pattern to secure the /status

endpoint, and the CAS server to secure the endpoints underneath it.

Edit the file etc/cas/config/cas.properties in the cas-overlay-template

directory on the master build server (casdev-master) and make the changes in the

following sections.

Configure admin pages properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 225

Configure the IP address pattern

Locate the line for the cas.adminPagesSecurity.ip property which, as distributed

with the CAS Maven WAR overlay, allows access only from the local host:

cas.adminPagesSecurity.ip=127\.0\.0\.1

The value of this property is a regular expression that is matched against the IP

address of the incoming request. If there is a match, access is granted; if there is

no match, access is denied. Change the setting to allow access from whatever

address(es) should have access. In our case, we will allow access from (a) the IT

department office subnet (192.168.50.0/24), and (b) the internal interfaces of the

F5 load balancers (192.168.1.10 , 192.168.1.20) (more on the reason for this

later):

cas.adminPagesSecurity.ip: ^192\\.168\\.(5

0\\.[0-9]{1,3}|1\\.[12]0)$

The backslashes are doubled because the backslash is a special character in Java

properties files; doubling them results in a backslash actually being put into the

regular expression (which causes the ‘.’ to match a literal ‘.’ instead of any

character).

Mark the endpoints “not sensitive”

In addition to enabling/disabling endpoints, CAS allows each endpoint to be

marked “sensitive” or “not sensitive.” The term “sensitive” is a little confusing in this

context (it comes from the Spring Security world). Basically, if an endpoint is

marked “sensitive” then Spring Security will be used to control access to it. If the

endpoint is not marked “sensitive” then CAS will be used to secure it. Since we

want to use the CAS server to secure all the endpoints, add the following

properties:

cas.monitor.endpoints.sensitive: false

endpoints.sensitive: false

Configure admin pages properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 226

Configure the CAS server settings

To use the CAS server to secure the endpoints, the URL of the CAS server’s login

page and the name of the service to be accessed must be configured. In addition,

to limit access to the endpoints to a specific set of “administrator” users, a separate

user file should be provided that lists these users and their roles. To do this, add

the following properties:

cas.adminPagesSecurity.loginUrl: ${cas.server.prefix}/login

cas.adminPagesSecurity.service: ${cas.server.prefix}/status/d

ashboard

cas.adminPagesSecurity.users: file:/etc/cas/config/admuser

s.properties

cas.adminPagesSecurity.adminRoles[0]: ROLE_ADMIN

Create the admusers.properties file

Create a file called etc/cas/config/admusers.properties in the cas-war-

overlay directory on the master build server (casdev-master) that looks like this:

This file lists the users who are allowed access to the CAS /statu

s/*

endpoints ("adminpages").

#

The syntax for each line is:

#

username=password,grantedAuthority[,grantedAuthority][,enabled|disa

bled]

#

gnarls=passwordnotused,ROLE_ADMIN

Additional users can be listed, one per line, below the first one. Since the users are

authenticating to the CAS server (against Active Directory or LDAP) the password

field is not needed, and can be filled with any string (e.g., passwordnotused). Each

user may have up to two grantedAuthority values assigned; for the user to be

able to access the endpoints, one of these values must match one of the values

Configure admin pages properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 227

assigned to the cas.adminPagesSecurity.adminRoles property (see above). This

file is also used by the management webapp (page 236), so having two possible

values allows users to be given access to the endpoints, the webapp, or both.

References

• CAS 5: Configuration Properties: CAS Endpoints

• CAS 5: Configuration Properties: Spring Boot Endpoints

Configure admin pages properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 228

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#cas-endpoints
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#spring-boot-endpoints

Update the service registry
Since we are using the CAS server to protect the endpoints, we need to create a

service definition for the dashboard.

Create a service definition for the dashboard

Create the file etc/cas/services/CASAdminDashboard-1509646291.json (replace

1509646291 with the current date +%s or YYYYMMDDhhmmss value) in the cas-

overlay-template directory on the master build server (casdev-master) with the

following contents:

{

"@class" : "org.apereo.cas.services.RegexRegisteredService",

"serviceId" : "^https://casdev.newschool.edu/cas/status/dashboar

d(\\z|/.*)",

"name" : "CAS Admin Dashboard",

"id" : 1509646291,

"description" : "CAS dashboard and administrative endpoints",

"evaluationOrder" : 5000

}

There is no need to create service definitions for all the other endpoints underneath

/status ; they will all be authenticated by this one. Note, however, that any

attempt to access those other endpoints before accessing the /status/dashboard

endpoint and authenticating to the CAS server will fail.

References

• CAS 5: JSON Service Registry

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 229

https://apereo.github.io/cas/5.2.x/installation/JSON-Service-Management.html

Install and test the application
Before the dashboard can be used, the the updated CAS server configuration files

must be installed.

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS configuration files on the master build server (casdev-master):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the scripts created earlier (page 99):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 230

Shut down all but one of the pool servers

Operating CAS with a pool of servers instead of a single server requires special

configuration. Because that configuration hasn’t been completed yet, testing must

be performed against a single server. Therefore, the other servers in the pool

should be shut down so that the load balancer will direct all traffic to that single

server. Run the command

systemctl stop tomcat

on all but one of the CAS servers (casdev-srvXX) to temporarily take those

servers out of the pool.

Access the dashboard

Open up a web browser (in “incognito” or “private browsing” mode) and enter the

URL of the dashboard:

https://casdev.newschool.edu/cas/status/dashboard

The dashboard should be displayed, as shown previously in Figure 21:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 231

Figure 21. The dashboard

Click on the various circles on the dashboard to see their contents.

Restart the pool servers

One testing is complete, run the command

systemctl start tomcat

on each of the pool servers shut down previously.

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 232

Update the load balancer service monitor
When we first configured the load balancers (page 66), we defined a monitor for

the server pool that connected to each server every 5 seconds and issued a GET

/ HTTP request to verify that Tomcat was running. Later, when we built and

installed the CAS server (page 99), we adjusted this monitor to instead issue a GET

/cas/login request and check for some text on the login page, to verify that not

only Tomcat, but the CAS application itself, were running. The drawback to this

change is that it resulted in a huge number of started-but-never-finished login

sessions on the CAS servers, and a correspondingly huge amount of output in the

log files (which, in addition to wasting disk space, made the logs much harder to

read).

However, now that we have the /status endpoint configured, we can adjust the

monitor to issue a GET /cas/status request instead. The output from a GET /cas/

status request looks something like this:

Health: OK

1.SessionMonitor: OK - 2 sessions. 0 service tickets.

2.MemoryMonitor: OK - 1648.57MB free (90.55%), 172.04MB use

d, 1820.61MB total.

Host: casdev-srv01

Server: https://casdev.newschool.edu

Version: 5.2.0-SNAPSHOT

So, by checking the data returned from the server for Health: OK , we can still

verify that Tomcat and the CAS server are running. To do this, log into the F5

administration portal and edit the casdev_https_8443_monitor . Change these two

lines in the definition:

recv "Login - CAS"

send "GET /cas/login\\r\\n"

to:

recv "Health: OK"

send "GET /cas/status\\r\\n"

Update the load balancer service monitor PDF last generated: October 18, 2018

Deploying Apereo CAS Page 233

so that the entire monitor looks like this:

ltm monitor https /Common/casdev_https_8443_monitor {

adaptive disabled

cipherlist DEFAULT:+SHA:+3DES:+kEDH

compatibility enabled

defaults-from /Common/https

description "Cas Dev Application HTTPS Monitor"

destination *:8443

interval 5

is-dscp 0

recv "Health: OK"

recv-disable none

send "GET /cas/status\\r\\n"

time-until-up 0

timeout 16

}

With the new monitor, there will still be a single line written to the Tomcat access

log, but there will not be any more lines written to the CAS log file.

Update the load balancer service monitor PDF last generated: October 18, 2018

Deploying Apereo CAS Page 234

Commit changes to Git
Before moving on to the next task, commit the changes made to cas.properties ,

as well as the new user file and new service registry definition file to Git to make

changes easier to keep track of (and to enable reverting to earlier configurations

easier). Run the commands

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git add etc/cas/config/admusers.properties

casdev-master# git add etc/cas/services/CASAdminDaashboard-150964629

1.json

casdev-master# git commit -m "Enabled the admin status dashboard"

[newschool-casdev 4e11f58] Enabled the admin status dashboard

3 files changed, 52 insertions(+), 2 deletions(-)

create mode 100644 etc/cas/config/admusers.properties

create mode 100644 etc/cas/services/CASAdminDashboard-1509646291.jso

n

casdev-master#

on the master build server (casdev-master).

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 235

Building the management webapp

Summary: Build and install the separate management webapp to

make it easier to manage the service registry and prepare for

managing the service registry in a high availability environment.

The CAS management webapp is a web-based GUI that allows CAS

administrators to create, modify, and delete service definitions in the service

registry. It is implemented as a completely separate web application built

independently of the CAS server. It can be deployed in the same Java Servlet

container that is running the CAS server, or it can be deployed in a completely

separate container. Either way, the operation of the CAS server does not depend in

any way on the state of the management webapp.

The management webapp isn’t strictly needed when using a file-based service

registry such as the JSON registry we have been using to this point, although it will

help avoid JSON syntax errors and similar mistakes. Where the webapp becomes

important is when using storage back ends such as databases for the service

registry. In that configuration, the webapp becomes the interface fronting the CRUD

operations that deal with the back end storage system.

Since implementing high availability (page 321) will require replacing the JSON file-

based service registry with something else that is suited for use in a multiple

server, clustered environment, the webapp is going to be a key component of our

environment.

References

• CAS 5: Services Management Webapp

Building the management webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 236

https://apereo.github.io/cas/5.2.x/installation/Installing-ServicesMgmt-Webapp.html

Create a Maven WAR overlay project
The CAS project provides a separate Maven WAR overlay template project for

building the management webapp. We will use that as the starting point for our

project.

Clone the overlay template project

Use Git to clone the overlay template project from GitHub. Run the commands

casdev-master# cd /opt/workspace

casdev-master# git clone https://github.com/apereo/cas-management-ove

rlay.git

Cloning into 'cas-management-overlay'...

remote: Counting objects: 297, done.

remote: Compressing objects: 100% (15/15), done.

remote: Total 297 (delta 8), reused 14 (delta 4), pack-reused 276

Receiving objects: 100% (297/297), 132.54 KiB | 0 bytes/s, done.

Resolving deltas: 100% (152/152), done.

casdev-master#

on the master build server (casdev-master). This will make a local copy of all files

in the template project and store them in a directory called cas-management-

overlay . It will also record the information needed for Git to keep the local copy of

the files synchronized with the copy stored on GitHub, so that corrections and

updates made by the project team can be incorporated into our project from time to

time.

 Tip: As an alternative to using Git to clone a repository, GitHub allows the

files in a repository to be downloaded in a Zip archive. However, this method

does not include the metadata that Git needs to keep the local copy in sync

with the master repository.

Switch to the right branch

The GitHub repository for the overlay template project contains multiple versions of

the template; each version is stored as a separate branch of the project. The

master branch usually points to the version of the template used for configuring

and deploying the latest stable release of the CAS server; this is the branch that

will initially be copied to disk by cloning the project. Run the commands

Create a Maven WAR overlay project PDF last generated: October 18, 2018

Deploying Apereo CAS Page 237

casdev-master# cd cas-management-overlay

casdev-master# grep '<cas.version>' pom.xml

<cas.version>5.2.0</cas.version>

casdev-master#

to determine which version of the CAS server the master branch will build. In most

circumstances (including this project), the master branch of the template is the

one you want to use (skip ahead to the next section, Create a local branch (page

239)).

If the master version of the template isn’t for the version of the CAS server you

want to work with (for example, if you want to work with an older version, or

experiment with the version currently under development), run the command

casdev-master# git branch -a

* master

remotes/origin/4.1

remotes/origin/4.2

remotes/origin/5.0

remotes/origin/5.1

remotes/origin/HEAD -> origin/master

remotes/origin/master

casdev-master#

to obtain a list of available branches, and then run the git checkout command to

switch to that branch. For example, to switch back to the 5.1 branch, run the

command

casdev-master# git checkout 5.1

Branch 5.1 set up to track remote branch 5.1 from origin.

Switched to a new branch '5.1'

casdev-master# grep '<cas.version>' pom.xml

<cas.version>5.1.5</cas.version>

casdev-master#

to switch branches (it’s not necessary to type the remotes/origin/ part of the

branch name). This will download additional/changed files from GitHub to the local

disk. You can switch back to the current version of the template by checking out the

master branch again:

Create a Maven WAR overlay project PDF last generated: October 18, 2018

Deploying Apereo CAS Page 238

casdev-master# git checkout master

Switched to branch 'master'

casdev-master# grep '<cas.version>' pom.xml

<cas.version>5.2.0</cas.version>

casdev-master#

Create a local branch

After you’re on the right branch (for our project, you should be on the master

branch), create a new branch local to your project, which will be used to track all of

your changes and keep them separate from any changes made to the template by

the CAS developers. This will make it easier in the future to merge upstream

changes from the CAS project team into your local template without having to redo

all your changes.

Choose a meaningful name for your branch, but not something likely to be

duplicated by the CAS developers—for example, newschool-casdev . Run the

commands

casdev-master# git checkout -b newschool-casdev

Switched to a new branch 'newschool-casdev'

casdev-master#

to create this new branch (replace newschool-casdev with the name of your

branch).

Create a Maven WAR overlay project PDF last generated: October 18, 2018

Deploying Apereo CAS Page 239

Build the webapp
Before building the management webapp, the build must be configured to include

the same service registry persistence method as the CAS server. This is

accomplished by adding a dependency to the Maven project object model. For this

project, that means adding the JSON service registry.

Add the JSON service registry to the project object model

Just as we did for the CAS server (page 108), edit the file pom.xml in the cas-

management-overlay directory on the master build server (casdev-master) and

locate the dependencies section (around line 69), which should look something

like this:

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-management-webapp</artifactId>

<version>${cas.version}</version>

<type>war</type>

</dependency>

</dependencies>

Insert a new dependency for the JSON service registry:

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-management-webapp</artifactId>

<version>${cas.version}</version>

<type>war</type>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Build the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 240

Build the webapp

Run Maven to build the webapp according to the project object model:

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-management-overlay 1.0

[INFO]

(lots of diagnostic output...check for errors)

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 25.841 s

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 29M/72M

[INFO]

casdev-master#

References

• CAS 5: Services Management Webapp

• CAS 5: JSON Service Registry

Build the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 241

https://apereo.github.io/cas/5.2.x/installation/Installing-ServicesMgmt-Webapp.html
https://apereo.github.io/cas/5.2.x/installation/JSON-Service-Management.html

Configure webapp properties
Like the CAS server, the management webapp expects to find its configuration files

in the operating system directory /etc/cas . The webapp configuration is

controlled via settings in a separate properties file, management.properties ,

located in the /etc/cas/config directory. The Maven WAR overlay template

provides a “source” for this file (which makes it easy to manage with Git).

Edit the file etc/cas/config/management.properties in the cas-management-

overlay directory on the master build server (casdev-master) and make the

changes in the following sections.

Configure CAS server information

Locate the lines for the cas.server.name and cas.server.prefix properties

(around lines 3-4) and set them to the same values as the identical properties in

the cas.properties file:

cas.server.name: https://casdev.newschool.edu

cas.server.prefix: ${cas.server.name}/cas

These two properties tell the webapp to use the named CAS server for

authentication.

Configure webapp server name

Locate the line for the cas.mgmt.serverName property (around line 10) and set it to

the URL of the server where the management webapp will be running. We’re going

to run the webapp on the CAS servers, in the same servlet container, so this

property should have the same value as cas.server.name , above:

cas.mgmt.serverName: ${cas.server.name}

Configure webapp properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 242

Configure users and roles

Like the dashboard, the management webapp uses a separate users file to list the

users who should be able to access it (after authenticating through the CAS server)

and the role(s) they should have. Locate the line for the

cas.mgmt.userPropertiesFile property (around line 7) and set it the same value

as the cas.adminPagesSecurity.users property in the cas.properties file:

cas.mgmt.userPropertiesFile: file:/etc/cas/config/admuser

s.properties

As discussed previously (page 227), users in this file can have one or two roles

assigned, making it possible to use different roles for the dashboard and the

webapp. For simplicity, we will stick with the ROLE_ADMIN role, which is used out-of-

the-box by both the dashboard and the webapp.

Delete the users.properties file

Since we will be re-using the same users file that the dashboard is using, the users

file included with the Maven WAR overlay is not needed. To avoid confusion,

remove it from the project with the following git command:

casdev-master# git rm etc/cas/config/users.properties

Delete embedded servlet container properties

The management.properties file included with the Maven WAR overlay includes

some properties that are only applicable when running the management webapp

as a Spring Boot application in an embedded servlet container. Since we are using

an external servlet container, these settings are not needed, and should be

deleted. Locate the lines below (around lines 12-13):

server.context-path=/cas-management

server.port=8443

Delete (or comment out) these lines.

Configure webapp properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 243

Configure the JSON service registry

In order for the management webapp to manage the services registry used by the

CAS server, it has to know where it is. Add a new property,

cas.serviceRegistry.json.location , and set it to the same value as the property

of the same name in cas.properties :

cas.serviceRegistry.json.location: file:/etc/cas/services

Configure the stub attribute repository

The management webapp allows attribute release policies to be configured on a

per-service basis. In order for it to know which attributes are available for release, a

special “stub” attribute repository should be configured, with the names of all the

attributes available for release (generally, this should be the combined set of

names from all the attribute repositories configured in cas.properties):

cas.authn.attributeRepository.stub.attributes.UDC_IDENTIFIER: UDC_I

DENTIFIER

cas.authn.attributeRepository.stub.attributes.cn: cn

cas.authn.attributeRepository.stub.attributes.displayName: displ

ayName

cas.authn.attributeRepository.stub.attributes.givenName: given

Name

cas.authn.attributeRepository.stub.attributes.mail: mail

cas.authn.attributeRepository.stub.attributes.sn: sn

cas.authn.attributeRepository.stub.attributes.uid: uid

Without this configuration, the management webapp will only be able to configure

the “all” or “none” release policies; it will not be able to support picking and

choosing the attributes to be released.

References

• CAS 5: Configuration Properties: Management Webapp

Configure webapp properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 244

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#management-webapp

Configure logging settings
The management webapp includes its own Log4j configuration. As we did with the

CAS server (page 97), we will move the location of the log file from the root of the

web application directory to /var/log/cas .

Edit the file etc/cas/config/log4j2-management.xml in the cas-management-

overlay directory on the master build server (casdev-master) and find the line

that defines the cas.log.dir property (around line 9) and change its value to

/var/log/cas , like this:

<Property name="cas.log.dir" >/var/log/cas</Property>

Adjust the log file rotation strategy (optional)

By default, the webapp log file will be rotated whenever its size reaches 512KB. To

switch to same time-based rotation strategy we established for the CAS server, edit

the etc/cas/config/log4j2-management.xml file again, and make the following

changes:

1. In the RollingFile configuration for cas.log (around line 17), change

the variable part of the filePattern attribute from %d{yyyy-MM-dd-HH}-

%i.log to %d{yyyy-MM-dd}.log (remove the hour and sequence number

from the pattern).

2. Remove (or comment out) the OnStartupTriggeringPolicy element

(around line 21).

3. Remove (or comment out) the SizeBasedTriggeringPolicy element

(around line 22).

4. Add the attributes interval="1" modulate="true" to the

TimeBasedTriggeringPolicy element (around line 23).

The end result should look like this:

Configure logging settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 245

<RollingFile name="cas-management" fileName="${sys:cas.log.dir}/cas-m

anagement.log" append="true"

filePattern="${sys:cas.log.dir}/cas-management-%d{yyyy-M

M-dd}.log">

<PatternLayout pattern="%d %p [%c] - %m%n"/>

<Policies>

<TimeBasedTriggeringPolicy interval="1" modulate="true"/>

</Policies>

</RollingFile>

 Warning: The configuration above assumes that there will be one, and only

one, log file for each day. If a file with today’s name already exists when

Tomcat decides to rotate, the existing file will be overwritten.

If you decide to keep the OnStartupTriggeringPolicy (which rotates the file

whenever Tomcat starts) or the SizeBasedTriggeringPolicy (which rotates the

file when it reaches a specified size (10MB by default)), or add some other

policy, you should make sure the filePattern you use generates unique

names if called more than once a day (e.g., by keeping the %i sequence

number) or you will lose log data.

References

• CAS 5: Logging

Configure logging settings PDF last generated: October 18, 2018

Deploying Apereo CAS Page 246

https://apereo.github.io/cas/5.2.x/installation/Logging.html

Update the service registry
Since we are using the CAS server to protect the management webapp, we need

to create a service definition for it.

Create a service definition for the webapp

Create the file etc/cas/services/CASServiceManagement-1510002272.json

(replace 1510002272 with the current date +%s or YYYYMMDDhhmmss value) in the

cas-overlay-template directory on the master build server (casdev-master) with

the following contents:

{

"@class" : "org.apereo.cas.services.RegexRegisteredService",

"serviceId" : "^https://casdev.newschool.edu/cas-managemen

t(\\z|/.*)",

"name" : "CAS Services Management",

"id" : 1510002272,

"description" : "CAS services management webapp",

"evaluationOrder" : 5500

}

References

• CAS 5: JSON Service Registry

Update the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 247

https://apereo.github.io/cas/5.2.x/installation/JSON-Service-Management.html

Install and test the webapp
To deploy the management webapp, we have to copy the application we just built

with Maven into Tomcat’s webapps directory., And, to make sure everything stays

in sync, it probably makes sense to (re)copy the CAS server application into

webapps as well. We also have to copy the new and updated files in etc/cas from

both the cas-management-overlay and cas-overlay-template directories.

Update the distribution tar file creation script

Earlier (page 99), we created a shell script to handle building the distribution tar

file (if you didn’t do this then, now is the time to do it). That script can be extended

to combine the necessary components of both the cas-overlay-template and the

cas-management-overlay into a single tar archive. Edit your cassrv-tarball.sh

script and update/replace its contents so that it looks something like this:

#!/bin/sh

WORKSPACE=/opt/workspace

SERVER=${WORKSPACE}/cas-overlay-template

WEBAPP=${WORKSPACE}/cas-management-overlay

tar czf /tmp/cassrv-files.tgz --owner=root --group=tomcat --mod

e=g-w,o-rwx \

-C ${SERVER} etc/cas \

-C ${SERVER}/target cas --exclude cas/META-INF \

-C ${WEBAPP} etc/cas \

-C ${WEBAPP}/target cas-management --exclude cas-management/MET

A-INF

echo ""

ls -asl /tmp/cassrv-files.tgz

exit 0

Update the installation shell script

When we created the original cassrv-tarball.sh script, we also created a

cassrv-install.sh script to manage shutting down Tomcat, deleting the old

contents of /etc/cas , deleting the old copy of the CAS server application (and any

associated runtime files), extracting a new copy of the application from the tar

Install and test the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 248

archive, and restarting Tomcat. That script can also be extended to handle both the

CAS server and the management webapp. Edit your cassrv-install.sh script

and update/replace its contents so that it looks something like this:

Install and test the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 249

#!/bin/sh

echo "--- Installing on `hostname`"

umask 027

if [-f /tmp/cassrv-files.tgz]

then

systemctl stop tomcat

cd /

Only delete/replace etc/cas/services if management webapp is

not already installed

if [! -d /opt/tomcat/latest/webapps/cas-management]

then

rm -rf etc/cas/config etc/cas/services

tar xzf /tmp/cassrv-files.tgz etc/cas

else

rm -rf etc/cas/config

tar xzf /tmp/cassrv-files.tgz etc/cas --exclude etc/cas/servi

ces

fi

chmod -fR g+w etc/cas/services

chmod -f g+w etc/cas/saml

cd /opt/tomcat/latest/

rm -rf webapps/cas work/Catalina/localhost/cas

rm -rf webapps/cas-management work/Catalina/localhost/cas-managem

ent

cd /opt/tomcat/latest/webapps

tar xzf /tmp/cassrv-files.tgz cas cas-management

systemctl start tomcat

rm -f /tmp/cassrv-files.tgz /tmp/cassrv-install.sh

echo "Installation complete."

else

echo "Cannot find /tmp/cassrv-files.tgz; nothing installed."

exit 1

fi

exit 0

Install and test the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 250

Install and test on the master build server

Use the new scripts created above (or repeat the commands) to install the

management webapp and updated CAS server files on the master build server

(casdev-master) and restart Tomcat:

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything seems to be running correctly on the master build server, it can be

copied to the CAS servers, again using the scripts above:

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Shut down all but one of the pool servers

Operating CAS with a pool of servers instead of a single server requires special

configuration. Because that configuration hasn’t been completed yet, testing must

be performed against a single server. Therefore, the other servers in the pool

should be shut down so that the load balancer will direct all traffic to that single

server. Run the command

Install and test the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 251

systemctl stop tomcat

on all but one of the CAS servers (casdev-srvXX) to temporarily take those

servers out of the pool.

Access the webapp

Open up a web browser (in “incognito” or “private browsing” mode) and enter the

URL of the management webapp:

https://casdev.newschool.edu/cas-management

and authenticate as a user listed in the /etc/cas/config/admusers.properties

file. The default screen of the management webapp, which shows a list of all

configured services sorted by order of evaluation, should appear and look

something like Figure 22.

Figure 22. The managemement webapp

Install and test the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 252

Try editing a service registry entry

Select “Edit” from the menu at the left of one of the service definitions (it doesn’t

matter which one), and then browse the various tabs across the top of the window

to see how all the various aspects of the service definition can be viewed and

edited in the webapp. Then select the “Contacts” tab, and try updating the contact

information for the service, as shown in Figure 23.

Figure 23. Editing a service definition

Click the “Save Changes” button at the top right of the window, and verify that the

changes can be successfully saved (a message will appear at the bottom of the

window). Check the log file (/var/log/cas/cas.log) and the contents of the

changed service definition in /etc/cas/services , too.

 Note: The management webapp always writes the complete service

definition to the registry, not just the parts that are different than the default

values. So don’t be surprised when the definition you just edited has a lot

more “stuff” in it that it did before you changed it.

Install and test the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 253

Try creating a service registry entry

Select “Add New Service” from the menu at the top right of the page and fill in the

“Basics” screen (the values don’t really matter). Then click “Save Changes” and

verify that a new service registry definition was successfully created. Check the log

file and /etc/cas/services , too.

Back on the default page (list of services), select “Delete” from the menu at the left

of the service definition you just created, and confirm the deletion. Then verify that

the service was indeed deleted.

Restart the pool servers

One testing is complete, run the command

systemctl start tomcat

on each of the pool servers shut down previously.

Install and test the webapp PDF last generated: October 18, 2018

Deploying Apereo CAS Page 254

Commit changes to Git
Before moving on to the next task, commit the new service registry definition file in

the cas-overlay-template directory, as well as all the changes in the cas-

management-overlay directory (pom.xml , etc/cas/config/

management.properties , and etc/cas/config/log4j2-management.properties), to

Git to make changes easier to keep track of (and to enable reverting to earlier

configurations easier). Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/services/CASServiceManagement-15100022

72.json

casdev-master# git commit -m "Added service definition for the manage

ment webapp"

[newschool-casdev 5581373] Added service definition for the managemen

t webapp

1 file changed, 8 insertions(+)

create mode 100644 etc/cas/services/CASServiceManagement-151000227

2.json

casdev-master# cd ../cas-management-overlay

casdev-master# git add pom.xml

casdev-master# git add etc/cas/config/management.properties

casdev-master# git add etc/cas/config/log4j2-management.xml

casdev-master# git commit -m "Enabled the management webapp"

[newschool-casdev-sm 7688bb1] Enabled the management webapp

4 files changed, 42 insertions(+), 21 deletions(-)

rewrite etc/cas/config/management.properties (99%)

delete mode 100644 etc/cas/config/users.properties

casdev-master#

on the master build server (casdev-master).

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 255

Customizing the CAS user interface

Summary: The CAS login page is the first thing users see when

logging into any CAS-ified service. It should reflect the branding and

style of the organization to be clearly recognizable, and should also

take advantage of available features to prevent spoofing attempts.

Branding is important to The New School. As something that every member of our

community encounters on a daily basis, the look and feel of the CAS login page is

an important representation of that brand. Since 2014, the CAS 3.5.x login page

has looked like the one shown in Figure 24. There are 15-20 background images

showing various New School locations and activities; a different image is randomly

selected each time the page is loaded.

Figure 24. The New School CAS 3.5 login page

After almost four years the page is looking a little dated, the amount of text under

the login button has grown over time to be somewhat unattractive, and although it

works on mobile devices, it’s not as nice an experience as it could be. As part of

the upgrade from CAS 3.5.x to CAS 5, we will be implementing a brand new login

page. The new page will be more in line with current web design practices, will be

fully responsive with a mobile-first design, and will also better tie into the current

branding on other New School web sites.

Customizing the CAS user interface PDF last generated: October 18, 2018

Deploying Apereo CAS Page 256

Start with a mock-up

The CAS server uses a collection of HTML files, Thymeleaf templates, CSS and

JavaScript files, and Java message bundles to implement the login page (and other

pages). Rather than try to work with all of these components while designing the

login page’s look and feel, a process that required several rounds of reviews and

changes, we created a simple mock-up of the page using plain old HTML, CSS,

and JavaScript and hosted it independently of the CAS server. By doing the design

outside the CAS server, we were able to focus on the look and feel of the page

itself, rather than the underlying technologies that would eventually be used

implement it.

The mock-up that we eventually arrived at is shown in Figure 25. Since CAS 5

uses Bootstrap as its base HTML / CSS / JavaScript framework, we elected to

develop our page using that framework as well, which gives us a responsive,

mobile-first design. We augmented the base Bootstrap framework with Federico

Zivolo’s Material Design for Bootstrap theme, which applies Material Design

principles to Bootstrap’s various elements. The New School’s custom Neue font

and CSS color settings bring the New School branding to the page.

Figure 25. Mock-up of the new login page

The HTML for the mock-up page is actually pretty simple, and looks like this:

Customizing the CAS user interface PDF last generated: October 18, 2018

Deploying Apereo CAS Page 257

https://getbootstrap.com/docs/3.3/
https://cdn.rawgit.com/FezVrasta/bootstrap-material-design/gh-pages-v3/index.html
https://material.io/

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8"/>

<meta http-equiv="X-UA-Compatible" content="IE=edge"/>

<meta name="viewport" content="width=device-width, initial-scal

e=1"/>

<title>Log in - New School SSO</title>

<!-- JQuery -->

<script src="//code.jquery.com/jquery-1.10.2.min.js"></script>

<!-- Bootstrap -->

<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/

3.3.7/css/bootstrap.min.css">

<script src="//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstra

p.min.js">

</script>

<!-- Material Design for Bootstrap -->

<link rel="stylesheet" href="css/bootstrap-material-design.min.cs

s">

<link rel="stylesheet" href="css/ripples.min.css">

<script src="js/material.min.js"></script>

<script src="js/ripples.min.js"></script>

<!-- TNS icons -->

<link rel="icon" type="image/x-icon" href="//www.newschool.edu/favi

con.ico">

<link rel="apple-touch-icon" href="//www.newschool.edu/framework/im

gs/tns-appletouch-icon.png">

<!-- Material Design fonts -->

<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Robo

to:300,400,500,700">

<link rel="stylesheet" href="//fonts.googleapis.com/icon?family=Mat

erial+Icons">

<!-- Page-specifc styles -->

<link rel="stylesheet" href="css/tnsfonts.css">

<link rel="stylesheet" href="css/newschool.css">

</head>

<body>

<div class="container-fluid">

<!-- New School header logo -->

Customizing the CAS user interface PDF last generated: October 18, 2018

Deploying Apereo CAS Page 258

<header role="banner" class="tns-header">

<section class="tns-header-region">

<div class="tns-lockup">

<div class="tns-banner text-center">

<h1 class="tns-uname">

<!-- Generator: Adobe Illustrator 18.1.0, SVG Export Pl

ug-In.

SVG Version: 6.00 Build 0) --><svg xmlns="http://w

ww.w3.org/2000/svg" xml:space="preserve"

version="1.1" x="0px" y="0px" viewBox="0 0 224.4 3

0.2"

enable-background="new 0 0 224.4 30.2"

id="tns-logo-svg">

<g id="Layer_1">

<g>

<rect x="4.4" y="19.7" width="220" height="3.5"/>

<rect x="4.4" y="26.7" width="220" height="3.5"/>

<g>

<path d="M9,3.9v12.4H5V3.9H0V0.3h14v3.6H9z"/>

<path d="M29.7,10.2H19.2v6.1h-4v-16h4v6.1h10.5V

0.3h4v16h-4V10.2z"/>

<path d="M35.5,16.3v-16h11.4v3.6h-7.4v2.7h6V10

h-6v2.7h7.4v3.6H35.5z"/>

<path d="M57.7,6.1h-0.6v10.2h-4v-16h4.7l9.3,10h

0.6v-10h4v16h-4.5L57.7,6.1z"/>

<path d="M73.5,16.3v-16h11.4v3.6h-7.4v2.7h6V10

h-6v2.7h7.4v3.6H73.5z"/>

<path d="M85.2,0.3h4.5l3.5,12.7h0.9l3.2-12.7h

7.5l3.6,12.7h0.9l3-12.7h4.5l-4.4,16h-7.1l-3.7-12.7h-1.1l-3.4,12.7

h-7.1L85.2,0.3z"/>

<path d="M121.5,5.2c0-3.4,2.7-5.2,6.2-5.2c

2,0,4.2,0.5,5.5,1.2l-0.8,3.4c-1.3-0.8-3.3-1.2-4.9-1.2

c-1.2,0-2.1,0.5-2.1,1.3c0,2.6,8.2,1.1,8.2,6.5c0,2.9-2,5.4-6.3,5.4

c-1.8,0-3.9-0.2-5.5-1L122,12c1.7,0.8,3.5,1.3,5.5,1.3c

1.8,0,2.2-0.6,2.2-1.4C129.7,9.5,121.5,10.9,121.5,5.2z"/>

<path d="M146.9,16.1c-1.3,0.5-2.4,0.5-4.2,0.5

c-5,0-8.3-3.9-8.3-8.3c0-4.5,3.5-8.3,8.7-8.3c1.3,0,2.8,0,4.1,0.5

l-0.4,3.6c-1.4-0.5-2.4-0.5-3.6-0.5c-3,0-4.7,1.7-4.7,4.7c

0,3,2,4.7,4.8,4.7c1.8,0,2.4-0.2,3.6-0.6V16.1z"/>

<path d="M163.2,10.2h-10.5v6.1h-4v-16h4v6.1h1

0.5V0.3h4v16h-4V10.2z"/>

<path d="M177.8,0c5.5,0,9.5,2.8,9.5,8.2c

0,5.6-4.3,8.4-9.5,8.4c-5.2,0-9.5-2.8-9.5-8.4C168.2,3,172.1,0,177.8,0

z M177.7,13.3c3.1,0,5.4-1.6,5.4-5.1c0-3.2-2.3-4.8-5.4-4.8

s-5.4,1.6-5.4,4.9C172.4,11.7,174.6,13.3,177.7,13.3z"/>

<path d="M197.5,0c5.5,0,9.5,2.8,9.5,8.2c

0,5.6-4.3,8.4-9.5,8.4c-5.2,0-9.5-2.8-9.5-8.4C187.9,3,191.8,0,197.5,0

Customizing the CAS user interface PDF last generated: October 18, 2018

Deploying Apereo CAS Page 259

z M197.4,13.3c3.1,0,5.4-1.6,5.4-5.1c0-3.2-2.3-4.8-5.4-4.8

s-5.4,1.6-5.4,4.9C192.1,11.7,194.3,13.3,197.4,13.3z"/>

<path d="M208,0.3h4v12.2h12.4v3.8H208V0.3z"/>

</g>

</g>

</g>

</svg>

</h1> <!-- tns-uname -->

</div> <!-- tns-banner -->

</div> <!-- tns-lockup -->

</section> <!-- tns-header-region -->

</header> <!-- tns-header -->

</div> <!-- container-fluid -->

<!-- login form box -->

<div id="container" class="container">

<div id="content">

<div class="row">

<div class="col-sm-12 col-md-4 col-md-offset-4">

<div class="well" id="login">

<header class="tns-header">

<div class="tns-banner">

<h2 class="tns-sitename">Single Sign-On</h2>

</div>

</header>

<h1>Log in</h1>

<p>to continue to [name of service]</p>

<form>

<!-- inputs -->

<div class="form-group label-floating is-empty">

<label class="control-label" for="username">NetID</la

bel>

<input class="form-control" id="username" name="usern

ame"

type="text" style="cursor: auto;">

</div>

<div class="form-group label-floating is-empty">

<label class="control-label" for="password">Passwor

d</label>

<input class="form-control" id="password" name="passw

ord"

type="password" style="cursor: auto;">

</div>

<!-- button -->

Customizing the CAS user interface PDF last generated: October 18, 2018

Deploying Apereo CAS Page 260

<div class="form-group text-center">

<button class="btn btn-primary btn-lg" name="submit">

Continue

<div class="ripple-container"></div>

</button>

</div>

<!-- account help -->

<div class="form-group">

<p class="acctopts">

<a href="https://account.newschool.edu/cgi-bin/acct

services.pl?f=i&s=pr">

<i class="material-icons acctopts">lock</i>

Reset your password

</p>

<p class="acctopts">

<a href="https://account.newschool.edu/cgi-bin/acct

services.pl?f=i&s=gn">

<i class="material-icons acctopts">help</i>

Look up your NetID

</p>

</div>

<!-- privacy and terms -->

<div class="form-row text-right privacy-terms">

<a href="//www.newschool.edu/privacy-policy/" targe

t="_blank">

Privacy

<a href="//it.newschool.edu/sites/default/files/uploa

ds/documents/Statement%20on%20the%20Responsibilities%20of%20Compute

r%20Users%20v2.1.pdf" target="_blank">

Terms

</div> <!-- form-row -->

</form>

</div> <!-- well -->

</div> <!-- col -->

</div> <!-- row -->

</div> <!-- content -->

</div> <!-- container -->

<script>

$(function () {

$.material.init();

Customizing the CAS user interface PDF last generated: October 18, 2018

Deploying Apereo CAS Page 261

});

</script>

</body>

</html>

The CSS styling for all the elements is included in the newschool.css file, and the

Neue font is loaded by tnsfonts.css . The script at the bottom of the page

initializes the Material Design for Bootstrap theme.

With the design finalized, the next step is to “port” the mock-up into the CAS user

interface framework. This is described in the following pages.

References

• Bootstrap

• Material Design

• Material Design for Bootstrap

Customizing the CAS user interface PDF last generated: October 18, 2018

Deploying Apereo CAS Page 262

https://getbootstrap.com/docs/3.3/
https://material.io/
https://cdn.rawgit.com/FezVrasta/bootstrap-material-design/gh-pages-v3/index.html

How CAS themes work
CAS uses Spring Web Flow to perform its processing of login and logout requests

(as well as “add-ons” like multi-factor authentication). It’s not necessary to

understand the intricacies of Spring Web Flow to customize the CAS user

interface, but it does help to have a basic understanding of what’s going on behind

the scenes.

A flow encapsulates a reusable sequence of steps that guide a user through the

completion of some task, such as logging in or logging out (the two main flows

provided by CAS). Flows can span multiple HTTP requests, have state, deal with

transactional data, are reusable, and may be dynamic and long-running. Each step

in a flow is called a state. There are five kinds of state:

1. A view state uses a dynamically-generated web page, or view, to display

information to the user or prompt the user for input. Transition to another

state is triggered by an event on the web page, such as the user clicking a

“submit” button.

2. An action state calls a CAS server function and then transitions to another

state in the flow depending on the outcome of the function call.

3. A decision state evaluates a Boolean expression and then transitions to

one of two other states in the flow depending on whether the expression is

true or false.

4. A subflow state allows one flow to call another flow to perform some steps.

Data may be passed between the calling flow and the subflow.

5. An end state defines the end of a flow. If the end state is part of the root

flow, execution ends. If it is part of a subflow, the calling flow is resumed.

The CAS user interface—the login page, logout page, and other pages displayed

for multi-factor authentication and so on—is part of the view state. The other states

comprise the “business logic” that determines which page(s) (view state(s)) are

ultimately shown to the user.

Parts of the user interface

There are three “parts” to the CAS user interface:

1. Views. A set of HTML files, one per view state, as described above. View

pages are processed through the Thymeleaf template engine enabling

them to dynamically access property settings and variables and evaluate

logical expressions using their values. Thymeleaf also makes it possible to

define a common layout template (page background, header and footer,

navigation elements, style sheet inclusions, etc.) to be shared by all the

How CAS themes work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 263

view pages.

2. Themes. A collection of cascading style sheets, JavaScript files, and

image files that are included by the view pages. The CSS files control the

colors, fonts, and other style-related aspects of the interface. The

JavaScript files define procedures to be executed in the user’s browser to

handle things like caps-lock detection, multi-factor authentication, etc. The

image files include logos, buttons, lines, etc. used by the style sheets.

3. Message bundles. Java property files (messages.properties for English,

messages_xx.properties for locale xx) that define all the text messages

displayed in the various views. The Thymeleaf template engine

automatically inserts messages from the proper message bundle (based

on the locale setting) into the HTML views through property reference

substitution.

The default views, default theme, and default message bundles are automatically

included in the CAS WAR file by the Maven build process. The message bundles

reside under WEB-INF/classes , the default theme resides under WEB-INF/

classes/static (in css , js , and images subdirectories), and the default views

reside under WEB-INF/classes/templates .

The default theme itself is defined by the WEB-INF/classes/cas-default-

theme.properties file:

standard.custom.css.file=/css/cas.css

admin.custom.css.file=/css/admin.css

cas.javascript.file=/js/cas.js

These properties define the main CSS file for the user views, the main CSS file for

the dashboard (admin pages), and the main JavaScript file for the user views,

respectively. The paths are rooted at WEB-INF/classes/static in the WAR file,

which serves as the document root for the CAS web application. This means, for

example, that the complete URL for /css/cas.css is

https://casdev.newschool.edu/cas/css/cas.css , which, if accessed, will retrieve

the file /var/lib/tomcat/webapps/cas/WEB-INF/classes/static/css/cas.css .

Modifying the user interface

When modifying the CAS user interface, there are two options: change the

decorative elements (styles and scripts) of the user interface but keep the same

structural elements (HTML views), or change both the decorative elements and the

structural elements.

How CAS themes work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 264

Changing decorative elements (styles and scripts)

To define a new theme that will re-style the default views, a WEB-INF/

classes/[theme_name].properties file that specifies the location of the main CSS

and JavaScript files for the theme should be created:

standard.custom.css.file: /themes/[theme_name]/css/cas.css

cas.javascript.file: /themes/[theme_name]/js/cas.js

admin.custom.css.file: /themes/[theme-name]/css/admin.css

Next, a WEB-INF/classes/static/themes/[theme_name] directory should be

created, and theme-specific cas.css , admin.css , and cas.js files placed in the

appropriate subdirectories (css and js). Additional subdirectories for images

and fonts can be created here too, if needed.

 Tip: When you define a custom theme, the CSS and JavaScript files you

declare in the [theme_name].properties file will be included instead of the

CSS and JavaScript files from the default theme. If your intention is to keep

most of the styling and scripting the same and make only make decorative

changes to the default theme (e.g., changing the background color or font

size), you may wish to begin with copies of the default files (WEB-INF/classes/

static/css/cas.css and WEB-INF/classes/static/js/cas.js) and add your

customizations to them rather than starting with empty files.

Changing structural elements (HTML views)

By default, the new theme created above will be applied to the default views.

However, it’s also possible to define a new set of views, different from the defaults.

To do this, the [theme_name].properties file and the locations for the decorative

components should be created as described above, and then a WEB-INF/classes/

templates/[theme_name] directory should be created to hold the HTML view files

for the new theme. There is no property setting to inform the server that it should

use the new set of views; it will simply use the files in the WEB-INF/classes/

templates/[theme_name] directory if it exists, or the default files (in WEB-INF/

classes/templates) if it does not.

 Note: If the WEB-INF/classes/templates/[theme_name] directory exists, the

server will expect to find all the views in that directory. Even if you’re only

How CAS themes work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 265

planning to change one or two of the views (e.g., the login and logout pages),

you must provide an HTML file for every view that the configured web flows

might need. The easiest way to accomplish this is to copy the entire contents

of the default template directory (all files and subdirectories) into your custom

template directory and then modify the files for the views you wish to

customize, rather than starting with an empty directory.

Changing message strings

By default, Thymeleaf will automatically retrieve message strings (using property

names) from WEB-INF/classes/messages.properties if the English (en) locale is

in effect, or from WEB-INF/classes/messages_xx.properties if another (xx) locale

is in effect. To change the value of a particular message string, the property that

defines that string can be re-defined in WEB-INF/classes/

custom_messages.properties . New properties can also be defined in this file and

used in the HTML views.

Summary

The table below summarizes the various files and directories associated with

customizing the CAS user interface. The procedures for actually creating them and

including them in the CAS WAR file are described in the following sections.

CAS default theme Custom theme

Theme

definition

WEB-INF/classes/

cas-default-theme.properties

WEB-INF/classes/

[theme_name].properties

Style

sheets

WEB-INF/classes/static/

css/*

WEB-INF/classes/static/

themes/[theme_name]/css/*

JavaScript WEB-INF/classes/static/

js/*

WEB-INF/classes/static/

themes/[theme_name]/js/*

Images WEB-INF/classes/static/

images/*

WEB-INF/classes/static/

themes/[theme_name]/images/*

HTML

Views

WEB-INF/classes/

templates/*

WEB-INF/classes/

templates/[theme_name]/*

How CAS themes work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 266

CAS default theme Custom theme

Messages WEB-INF/classes/

messages.properties

messages_xx.properties

WEB-INF/classes/

custom_messages.properties

References

• CAS 5: User Interface Customization: Dynamic Themes

• CAS 5: User Interface Customization: CSS/JavaScript

• CAS 5: User Interface Customization: Views

• CAS Community: “CAS 5.1.x Custom template. Anyone get this working?”

• CAS Community: “CAS 5.2.0-RC1 Theme not resolved correctly”

How CAS themes work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 267

https://apereo.github.io/cas/5.2.x/installation/User-Interface-Customization-Themes.html
https://apereo.github.io/cas/5.2.x/installation/User-Interface-Customization-CSSJS.html
https://apereo.github.io/cas/5.2.x/installation/User-Interface-Customization-Views.html
https://groups.google.com/a/apereo.org/forum/#!searchin/cas-user/themes/cas-user/k-yfoou7Zy0/BXry1PxgFAAJ
https://groups.google.com/a/apereo.org/forum/#!searchin/cas-user/template/cas-user/3eaKVAMhFYE/uuj7eEpCAwAJ

How Thymeleaf layouts work
As described in the previous section (page 263), CAS displays a dynamically-

created web page, or view, whenever the web flow enters a view state. CAS 5 uses

Thymeleaf, a server-side template engine, to manage the generation of this

dynamic content (CAS 3 used Java Server Pages for this purpose).

Thymeleaf uses processors to make dynamic changes to a document. A processor

may perform variable (or property) substitutions, evaluate expressions, implement

conditional statements, or pass information to/from application methods. In HTML

documents, processors take the form of specially-defined HTML attributes that are

evaluated by the Thymeleaf engine. A set of processors—plus some extra

artifacts— is called a dialect. Thymeleaf comes with two dialects out of the box: the

Standard Dialect, which defines a base set of features that should be more than

enough for most scenarios, and the SpringStandard Dialect, which extends the

Standard Dialect with some specific features that integrate Thymeleaf with Spring

MVC applications.

CAS makes use of the SpringStandard Dialect and another dialect, called the

Thymeleaf Layout Dialect.

Thymeleaf Layout Dialect

The Thymeleaf Layout Dialect is a dialect (feature set) for Thymeleaf that allows

layouts and reusable templates to be built in order to improve code reuse. The

dialect makes use of two major components: layouts and content templates.

Layouts

A layout is an HTML file that defines web page components that will be common to

all web pages using the layout: the header, footer, menu, navigation, etc. A very

simple layout might look like this:

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 268

<!DOCTYPE html>

<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout">

<head>

<title>My simple layout</title>

<link rel="stylesheet" href="common-styles.css"/>

<script src="common-script.js"></script>

</head>

<body>

<header>

<h1>My Little Website</h1>

</header>

<section layout:fragment="content">

<p>Default page content</p>

</section>

<footer>

<p>My little footer</p>

<p layout:fragment="custom-footer">Default footer text</p>

</footer>

</body>

</html>

The interesting parts of this layout are the layout:fragment attribute used on the

<section> element (line 12) and the <p> element in the footer (line 17). These

elements are candidates to be replaced by matching fragments from content

templates.

Content templates

Content templates provide content to be substituted into a layout. A simple content

template might look something like this:

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 269

<!DOCTYPE html>

<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout" layou

t:decorate="~{layout}">

<head>

<title>Some simple content</title>

<link rel="stylesheet" href="content-specific-styles.css"/>

<script src="content-specific-script.js"></script>

</head>

<body>

<p>Here is some text from the content template.</p>

<section layout:fragment="content">

<p>This is a paragraph from the content template.</p>

</section>

<footer>

<p layout:fragment="custom-footer">This is the custom footer fro

m the content template.</p>

</footer>

</body>

</html>

The layout:decorate attribute on the <html> tag is required, and tells Thymeleaf

which layout will be “decorated” using this content template. The value in the curly

braces is the name of the layout; Thymeleaf will look for a file with that name and a

.html suffix to find the file containing the layout. The content template above

defines its own title, style sheet, and script file; it also defines fragments named

content and custom-footer .

After Thymeleaf processes the content template, the resulting page sent to the

user’s browser will be:

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 270

<!DOCTYPE html>

<html>

<head>

<title>Some simple content</title>

<link rel="stylesheet" href="common-styles.css"/>

<script src="common-script.js"></script>

<link rel="stylesheet" href="content-specific-styles.css"/>

<script src="content-specific-script.js"></script>

</head>

<body>

<header>

<h1>My Little Website</h1>

</header>

<section>

<p>This is a paragraph from the content template.</p>

</section>

<footer>

<p>My little footer</p>

<p>This is the custom footer from the content template.</p>

</footer>

</body>

</html>

The content template decorated layout.html , resulting in a combination of the

layout plus the fragments of the content template:

• The body of the content template’s <head> element has been appended

to the body of the layout’s <head> element to produce a single, merged

<head> element.

• The body of the content template’s <title> element has replaced

(overridden) the body of the layout’s <title> element.

• The elements in the layout with a layout:fragment attribute (the

<section> and <p> elements mentioned earlier) have been replaced

with the contents of the corresponding fragments from the content

template.

• Anything outside of a layout:fragment in the <body> of the content

template (e.g., “Here is some text from the content template”) has been

discarded.

• All other elements in the layout have been reproduced verbatim.

Content templates don’t have to provide definitions for all fragments referenced by

the layout template. For example:

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 271

<!DOCTYPE html>

<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout" layou

t:decorate="~{layout}">

<head>

<body>

<section layout:fragment="content">

<p>This is a paragraph from the content template.</p>

</section>

</body>

</html>

would result in:

<!DOCTYPE html>

<html>

<head>

<title>My simple layout</title>

<link rel="stylesheet" href="common-styles.css"/>

<script src="common-script.js"></script>

</head>

<body>

<header>

<h1>My Little Website</h1>

</header>

<section>

<p>This is a paragraph from the content template.</p>

</section>

<footer>

<p>My little footer</p>

<p>Default footer text</p>

</footer>

</body>

</html>

In this case, the page title is the one defined in the layout, because the content

template did not define one. And the text from the layout also appears in the page

footer, because the content template did not define a custom-footer fragment.

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 272

The layout:title-pattern attribute

As shown above, if the content template defines a <title> element, the content of

that element will replace the content of a <title> element defined in the layout

template. But for occasions in which the page title includes both a “standard” part

and a “variable” part, Thymeleaf provides the layout:title-pattern attribute for

use in the layout template. A layout that contains

<title layout:title-pattern="$LAYOUT_TITLE - $CONTENT-TITLE">Roses ar

e red</title>

and a content template that contains

<title>Violets are blue</title>

would result in

<title>Roses are red - Violets are blue</title>

Alternatively, a layout contains

<title layout:title-pattern="$CONTENT_TITLE - $LAYOUT-TITLE">Roses ar

e red</title>

and the same content template would result in

<title>Violets are blue - Roses are red</title>

Thymeleaf SpringStandard Dialect

As shown above the Thymeleaf Layout Dialect defines some special HTML

attributes (layout:decorate , layout:fragment , and layout:title-pattern ,

among others) that allow templates to be processed and turned into web pages.

The rest of the Thymeleaf functionality used by CAS is provided by the

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 273

SpringStandard Dialect (which, as mentioned above, is an extension of the

Standard Dialect). The dialect features most commonly used in CAS views are

described in the following subsections; for a complete description of all features,

consult the documentation linked at the bottom of this page.

Value substitutions

Thymeleaf allows values to be retrieved from Java properties, methods, classes,

variables, etc.

#themes.code('property.name')

Retrieve the value of property.name from the [theme_name].properties file

and substitute it here.

#{message.key}

Look up the value of message.key in the messages.properties (or

messages_xx.properties) bundle, or the overriding

custom_messages.properties bundle, and substitute it here.

${expression}

Evaluate the expression, written in Spring Expression Language, and substitute

the result here. The expression may contain, among other things, literals,

boolean and relational operators, regular expressions, class expressions,

method invocations, variables, bean references, access to properties, etc.

Usually, in CAS templates, the expression is either a simple variable reference

or method call to obtain a value.

@{url}

Treat url (which may be an expression) as a URL. This construct is usually

used in conjunction with one of the attribute modifiers below.

Attribute modifiers

Thymeleaf allows the values for attributes of HTML elements to be computed

dynamically at runtime and “injected” into the element. To do this, special

Thymeleaf variants of the attributes are used in place of the regular attributes. For

example:

<a th:href="@{#{screen.welcome.privacy.url}}">Privacy Policy

will look up the value of screen.welcome.privacy.url in messages.properties

and then set the href attribute of the <a> tag to this URL.

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 274

There are several dozen attributes for which Thymeleaf will perform this service,

but the most commonly used ones in the CAS views are th:href and th:src for

URL attributes (mostly used on <a> , , <script> , and <link> tags), and

th:value for HTML form input element default values.

Text (tag body) modifiers

Thymeleaf also allows the values (contents) of HTML elements themselves to be

computed dynamically at runtime. For example:

<p th:text="#{home.welcome}">Welcome to our widget store!</p>

will look up the value of home.welcome in messages.properties and then set the

contents of the <p> element to that value, replacing the words “Welcome to our

widget store!”.

The th:text modifier substitutes “escaped” text into an element, while the

th:utext modifier substitutes “unescaped” text. The difference can be seen when

the string to be substituted contains HTML tags or entity references instead of

simple plain text. For example, if messages.properties contains

home.welcome=Welcome to our fantastic widget store!

then the example above will result in

<p>Welcome to our fantastic widget store!</p>

which is probably not what was intended. On the other hand, this:

<p th:utext="#{home.welcome}">Welcome to our widget store!</p>

will produce

<p>Welcome to our fantastic widget store!</p>

which is the intended result.

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 275

Conditional evaluation

The th:if and th:unless attributes will evaluate an expression and, depending

on the result, cause the element containing the attribute to be included in the

output (what’s sent to the browser) or not. The th:if attribute will cause the

element to be included if the expression evaluates to true; the th:unless attribute

will cause the element to be included if the expression evaluates to false. For

example, the CAS login form contains this:

<div class="registered-service" th:if="${registeredService}">

<div th:if="${serviceUIMetadata}">

<p>to continue to

</p>

</div>

<div th:unless="${serviceUIMetadata}">

<p>to continue to

</p>

</div>

</div>

The outermost <div> and its contents will be included in the output only if the

registeredService variable is set and non-null. If the variable is set, then the

string to continue to [service_name] will be displayed. Depending on whether

or not the serviceUIMetadata variable is set and non-null (i.e., whether the service

is a SAML-based service or not), the value of [service_name] will be obtained

from the SAML2 metadata or the service registry entry.

Re-usable fragments

Thymeleaf also makes it possible to include fragments from other files, making it

possible to define a fragment that can be used in more than one content template.

For example, the line

<div th:replace="fragments/footer"/>

will replace the <div> element (the “host tag”) with the contents of the file

fragments/footer.html . The th:replace directive may be used in both layout

templates and content templates; it may also be used within the fragments

themselves (e.g., content.html may contain th:reaplce="fragments/foo" ,

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 276

which in turn may contain th:replace="fragments/bar"). There is also a

th:insert directive that will insert the contents of the fragment into the host tag,

rather than replacing the host tag.

The CAS templates

The CAS server’s default Thymeleaf templates are kept in WEB-INF/classes/

templates :

casdev-master# cd /var/lib/tomcat/cas/WEB-INF/classes/templates

casdev-master# ls -F

casAcceptableUsagePolicyView.html

casAccountDisabledView.html

casAccountLockedView.html

...

casLoginView.html

casLogoutView.html

...

fragments/

layout.html

...

casdev-master#

There are a little more than three dozen files whose names begin with cas ; these

are the content templates for the various views. There is one file for each view

state defined by the CAS web flows and subflows; the names of the files make it

fairly obvious which file belongs to each state.

The layout.html file is the layout template for all the views; this is where the main

components of the user interface look and feel are defined.

The fragments directory contains re-usable HTML code fragments that are

included into other templates with th:replace .

References

• Thymeleaf Layout Dialect: Examples

• Thymeleaf: Tutorial: Using Thymeleaf

• Thymelead: Tutorial: Thymeleaf + Spring

How Thymeleaf layouts work PDF last generated: October 18, 2018

Deploying Apereo CAS Page 277

https://ultraq.github.io/thymeleaf-layout-dialect/Examples.html
https://www.thymeleaf.org/doc/tutorials/2.1/usingthymeleaf.html
https://www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html

Add a new theme to the overlay
The New School CAS login page is different enough from the CAS default page

that we will need to provide both custom decorative elements (styles and scripts)

and custom structural elements (HTML views). The files associated with these new

elements will be incorporated into the CAS WAR file using the Maven overlay.

Create the Maven src directory

To include original source material in the CAS WAR file created by the Maven build

process, that material should be placed in the src directory of the Maven project.

Maven uses the src directory and various subdirectories therein to organize the

source material and determine when it should be used and where it should be

copied to (if anywhere). The reference documentation, linked at the bottom of this

page, provides more detail about this.

For the purposes of including the files associated with our new theme, we will use

the src/main/resources directory. Maven will copy the contents of this directory

into the WAR file under WEB-INF/classes (i.e., src/main/resources/foo will

appear in the WAR file as WEB-INF/classes/foo). This is the “overlay” part of our

Maven WAR overlay project—files and subdirectories with unique names will be

added to the WAR file, while files and subdirectories with conflicting names will

replace (overwrite) the originals.

Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# mkdir -p src/main/resources

on the master build server (casdev-master) to create this directory.

Define the newschool theme

To define the newschool theme, first create the file src/main/resources/

newschool.properties (recall that the contents of src/main/resources will be

overlaid onto WEB-INF/classes). This file will specify the decorative elements

(styles and scripts) associated with the new theme:

Add a new theme to the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 278

standard.custom.css.file: /themes/newschool/css/newschool.css

admin.custom.css.file: /themes/newschool/css/admin.css

cas.javascript.file: /themes/newschool/js/newschool.js

The files may be named any way that makes sense; they do not have to be named

cas.css , cas.js , etc. Here we have chosen to use the name of the theme to

make it clear when we include them what they are. Next, create the directory

structure that will hold the theme’s decorative elements (page 265) by running the

commands

casdev-master# cd src/main/resources

casdev-master# for sub in css js images fonts

> do

> mkdir -p static/themes/newschool/${sub}

> done

casdev-master#

These are the subdirectories that will hold the theme’s CSS style sheets,

JavaScript files, images, and fonts.

Copy in theme files from the mock-up

We already created many of the files that will reside in these subdirectories when

we created the mock-up website (see the HTML shown in the overview (page

256)). So, rather than create them again from scratch, we will copy them from

there:

casdev-master# cd static/themes/newschool

Copy the CSS files (we have chosen to merge newschool.css and testweb.css

into a single file):

casdev-master# curl -L https://testweb.newschool.edu/sso/css/newschoo

l.css https://testweb.newschool.edu/sso/css/tnsfonts.css > newschoo

l.css

casdev-master# curl -L https://testweb.newschool.edu/sso/css/bootstra

p-material-design.min.css -o css/bootstrap-material-design.min.css

casdev-master# curl -L https://testweb.newschool.edu/sso/css/ripple

s.min.css -o css/ripples.min.css

casdev-master# touch css/admin.css

Add a new theme to the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 279

We create an empty admin.css file, since it’s referenced in

newschool.properties above but was not part of the mock-up website. Next, copy

the JavaScript files:

casdev-master# curl -L https://testweb.newschool.edu/sso/js/materia

l.min.js -o js/material.min.js

casdev-master# curl -L https://testweb.newschool.edu/sso/js/ripples.m

in.js -o js/ripples.min.js

casdev-master# touch js/newschool.js

We create an empty newschool.js file, since it’s referenced in

newschool.properties above but was not part of the mock-up website. Next, copy

the image files:

casdev-master# curl -L https://testweb.newschool.edu/sso/images/backg

round.jpg -o images/background.jpg

casdev-master# curl -L https://www.newschool.edu/favicon.ico -o image

s/favicon.ico

casdev-master# curl -L https://www.newschool.edu/framework/imgs/tns-a

ppletouch-icon.png -o images/appleicon.png

The mock-up website pulled these files from difference sources; we’ve collected

them all into the images subdirectory for the CAS server. Finally, copy the font

files:

casdev-master# wget -q -np -nH -R '*html*' --cut-dirs=1 -r https://te

stweb.newschool.edu/sso/fonts/

There are, of course, other ways these files can be copied into the overlay, or they

can be created from scratch if there is no mock-up website to work from.

Create the newschool template set

Rather than creating an entire new set of HTML views (Thymeleaf templates) from

scratch, we well start with a copy of the default views and customize them.

The easiest way to get a copy of the default templates is to simply copy them from

the deployed application directory . Run the commands

Add a new theme to the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 280

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# cd src/main/resources

casdev-master# mkdir templates

casdev-master# cp -rp /var/lib/tomcat/cas/WEB-INF/classes/templates t

emplates/newschool

casdev-master# chown -R root.root templates/newschool

casdev-master# chmod -R og+rX templates/newschool

to copy the default templates from the deployed application directory to the

directory structure that will hold the theme’s structural elements (page 265).

The complete theme directory structure

Once all the commands above have been executed, the src/main/resources

directory in the overlay should look like this:

Add a new theme to the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 281

src

└── main/

└── resources/

├── custom_messages.properties

├── newschool.properties

├── static/

│ └── themes/

│ └── newschool/

│ ├── css/

│ │ ├── admin.css

│ │ ├── bootstrap-material-design.min.css

│ │ ├── newschool.css

│ │ └── ripples.min.css

│ ├── fonts/

│ │ └── Neue/

│ │ ├── Neue-Black.eot

│ │ ├── Neue-Black.svg

│ │ ├── Neue-Black.ttf

│ │ ├── Neue-Black.woff

│ │ ├── Neue-Bold.eot

│ │ ├── Neue-Bold.svg

│ │ ├── Neue-Bold.ttf

│ │ ├── Neue-Bold.woff

│ │ ├── Neue-BoldItalic.svg

│ │ ├── Neue-BoldItalic.ttf

│ │ ├── Neue-BoldItalic.woff

│ │ ├── Neue-Regular.eot

│ │ ├── Neue-Regular.svg

│ │ ├── Neue-Regular.ttf

│ │ ├── Neue-Regular.woff

│ │ ├── Neue-RegularItalic.eot

│ │ ├── Neue-RegularItalic.svg

│ │ ├── Neue-RegularItalic.ttf

│ │ ├── Neue-RegularItalic.woff

│ │ ├── NeueDisplay-Black.eot

│ │ ├── NeueDisplay-Black.svg

│ │ ├── NeueDisplay-Black.ttf

│ │ ├── NeueDisplay-Black.woff

│ │ ├── NeueDisplay-Random.eot

│ │ ├── NeueDisplay-Random.svg

│ │ ├── NeueDisplay-Random.ttf

│ │ ├── NeueDisplay-Random.woff

│ │ ├── NeueDisplay-Ultra.eot

│ │ ├── NeueDisplay-Ultra.svg

│ │ ├── NeueDisplay-Ultra.ttf

│ │ ├── NeueDisplay-Ultra.woff

│ │ ├── NeueDisplay-Wide.eot

Add a new theme to the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 282

│ │ ├── NeueDisplay-Wide.svg

│ │ ├── NeueDisplay-Wide.ttf

│ │ └── NeueDisplay-Wide.woff

│ ├── images/

│ │ ├── appleicon.png

│ │ ├── background.jpg

│ │ └── favicon.ico

│ └── js/

│ ├── material.min.js

│ ├── newschool.js

│ └── ripples.min.js

└── templates/

└── newschool/

├── casAcceptableUsagePolicyView.html

├── casAccountDisabledView.html

├── casAccountLockedView.html

├── casAuthenticationBlockedView.html

├── casAuthyLoginView.html

├── casAzureAuthenticatorLoginView.html

├── casBadHoursView.html

├── casBadWorkstationView.html

├── casConfirmLogoutView.html

├── casConfirmView.html

├── casConsentLogoutView.html

├── casConsentReviewView.html

├── casConsentView.html

├── casDuoLoginView.html

├── casExpiredPassView.html

├── casGenericSuccessView.html

├── casGoogleAuthenticatorLoginView.html

├── casGoogleAuthenticatorRegistrationView.html

├── casGuaDisplayUserGraphicsView.html

├── casGuaGetUserIdView.html

├── casInterruptView.html

├── casLoginMessageView.html

├── casLoginView.html

├── casLogoutView.html

├── casMfaRegisterDeviceView.html

├── casMustChangePassView.html

├── casPac4jStopWebflow.html

├── casPasswordUpdateSuccessView.html

├── casPropagateLogoutView.html

├── casRadiusLoginView.html

├── casResetPasswordErrorView.html

├── casResetPasswordSendInstructionsView.html

├── casResetPasswordSentInstructionsView.html

├── casResetPasswordVerifyQuestionsView.html

Add a new theme to the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 283

├── casRiskAuthenticationBlockedView.html

├── casServiceErrorView.html

├── casSurrogateAuthnListView.html

├── casSwivelLoginView.html

├── casU2fLoginView.html

├── casU2fRegistrationView.html

├── casYubiKeyLoginView.html

├── casYubiKeyRegistrationView.html

├── error/

│ ├── 401.html

│ ├── 403.html

│ ├── 404.html

│ ├── 405.html

│ └── 423.html

├── error.html

├── fragments/

│ ├── bottom.html

│ ├── cas-resources-list.html

│ ├── cookies.html

│ ├── defaultauthn.html

│ ├── footer.html

│ ├── footerButtons.html

│ ├── head.html

│ ├── insecure.html

│ ├── loginProviders.html

│ ├── loginform.html

│ ├── loginsidebar.html

│ ├── logo.html

│ ├── modal.html

│ ├── pwdupdateform.html

│ ├── serviceui.html

│ └── top.html

├── layout.html

├── monitoring/

│ ├── attrresolution.html

│ ├── layout.html

│ ├── viewAuthenticationEvents.html

│ ├── viewConfig.html

│ ├── viewConfigMetadata.html

│ ├── viewDashboard.html

│ ├── viewLoggingConfig.html

│ ├── viewSsoSessions.html

│ ├── viewStatistics.html

│ └── viewTrustedDevices.html

└── protocol/

├── 2.0/

│ ├── casProxyFailureView.html

Add a new theme to the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 284

│ ├── casProxySuccessView.html

│ ├── casServiceValidationFailure.html

│ └── casServiceValidationSuccess.html

├── 3.0/

│ ├── casServiceValidationFailure.html

│ └── casServiceValidationSuccess.html

├── casPostResponseView.html

├── oauth/

│ └── confirm.html

├── oidc/

│ └── confirm.html

└── openid/

├── casOpenIdAssociationSuccessView.html

├── casOpenIdServiceFailureView.html

├── casOpenIdServiceSuccessView.html

└── user.html

The following pages in this section will discuss how to customize these pages.

References

• Apache Maven: Introduction to the Standard Directory Layout

Add a new theme to the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 285

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Build and deploy the overlay
Now that the theme and template files have been added to the overlay, the overlay

has to be rebuilt and deployed. The customization process then becomes,

basically:

1. Edit one or more of the files

2. Check the results in a web browser

3. Rinse and repeat

until happy. Doing this on the master build server and rebuilding/re-deploying the

sever after every change is clearly not a very productive way to accomplish this

process. Therefore, we will instead edit the files directly on the deployed CAS

server, and once we’re happy with them, copy the final versions back into the

overlay on the master build server.

Configure user interface properties

Edit the file etc/cas/config/cas.properties in the cas-overlay-template

directory on the master build server (casdev-master) and add the following line:

spring.thymeleaf.cache: false

This turns off caching in the Thymeleaf engine, so that when changes are made to

the HTML views on the server, they will be immediately re-processed by Thymeleaf

and visible when the browser reloads the pages. When caching is enabled, pages

are only processed when the engine first loads them, meaning that changes will not

be visible until the server is restarted.

 Important: Disabling Thymeleaf caching may have a negative impact on

CAS server performance, especially in high-load environments. Therefore, it

should only be disabled in development and/or test environments. On

production CAS servers, this property should always be set to true.

Next, add the following line, which will make all services use the new theme and

template files instead of the defaults:

cas.theme.defaultThemeName: newschool

Build and deploy the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 286

 Note: This setting forces all services to use the same theme, which makes

sense in most environments. For environments that need (or want) to have

different themes applied to different services, it’s also possible to set the

theme on a per-service basis via the service registry.

Rebuild the server

Run Maven to rebuild the server to include the new theme and view files:

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 01:00 min

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 35M/84M

[INFO]

casdev-master#

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS configuration files on the master build server (casdev-master):

Build and deploy the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 287

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the scripts created earlier (page 99):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Shut down all but one of the pool servers

Operating CAS with a pool of servers instead of a single server requires special

configuration. Because that configuration hasn’t been completed yet, testing must

be performed against a single server. Further, since we’re going to be editing the

CSS, JavaScript, and HTML files and looking for those changes, we want to make

sure we’re accessing the same server (the one where we’re editing the files) every

time. Therefore, the other servers in the pool should be shut down so that the load

balancer will direct all traffic to that single server. Run the command

systemctl stop tomcat

on all but one of the CAS servers (casdev-srvXX) to temporarily take those

servers out of the pool.

Build and deploy the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 288

References

• CAS 5: Configuration Properties: Themes

• CAS 5: Configuration Properties: Views

Build and deploy the overlay PDF last generated: October 18, 2018

Deploying Apereo CAS Page 289

https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#themes
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#views

Overview
Now that the files for the new theme have been put into the Maven overlay and

deployed to the CAS servers, it’s time to customize their content. This process can

be broken down into four main steps:

1. Identify the “applies to all pages” elements of the HTML in the mock-up

login page created earlier, and merge them into the layout template

(layout.html).

2. Update the login view to use the new layout template, and copy the login

page-specific elements of the HTML in the mock-up login page to the files

that make up the login view (casLoginView.html and fragments/

loginform.html).

3. Update the logout view to use the new layout template.

4. Update the other views used by the server to use the new layout template.

As mentioned previously, it’s easiest to perform this work on the “live” files on one

of the deployed CAS servers to avoid the need to rebuild and re-deploy the overlay

after every change. Once an acceptable set of files has been created, they can be

copied back to the source (overlay template) directory and committed to git . For

the purposes of the following changes, casdev-srv01 will be that server. Begin by

changing to the deployed CAS server directory:

casdev-srv01# cd /var/lib/tomcat/cas/WEB-INF/classes

Overview PDF last generated: October 18, 2018

Deploying Apereo CAS Page 290

Update the layout template
In general, the layout template is responsible for providing most of the <head>

element content across all the views, so that they all look the same. And it’s also

responsible for providing the common-to-all-views components of the <body>

element (headers, footers, and such). The main tasks in updating the layout

template, therefore, are merging the <head> and <body> elements we created in

the mock-up login page with the ones provided by the CAS project in

layout.html .

Merging the <head> elements

The mock-up login page includes a number of external style sheets, scripts, and

fonts:

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 291

<head>

<meta charset="UTF-8"/>

<meta http-equiv="X-UA-Compatible" content="IE=edge"/>

<meta name="viewport" content="width=device-width, initial-scal

e=1"/>

<title>Log in - New School SSO</title>

<!-- JQuery -->

<script src="//code.jquery.com/jquery-1.10.2.min.js"></script>

<!-- Bootstrap -->

<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/

3.3.7/css/bootstrap.min.css">

<script src="//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstra

p.min.js"></script>

<!-- Material Design for Bootstrap -->

<link rel="stylesheet" href="css/bootstrap-material-design.min.cs

s">

<link rel="stylesheet" href="css/ripples.min.css">

<script src="js/material.min.js"></script>

<script src="js/ripples.min.js"></script>

<!-- TNS icons -->

<link rel="icon" type="image/x-icon" href="//www.newschool.edu/favi

con.ico">

<link rel="apple-touch-icon" href="//www.newschool.edu/framework/im

gs/tns-appletouch-icon.png">

<!-- Material Design fonts -->

<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Robo

to:300,400,500,700">

<link rel="stylesheet" href="//fonts.googleapis.com/icon?family=Mat

erial+Icons">

<!-- Page-specifc styles -->

<link rel="stylesheet" href="css/tnsfonts.css">

<link rel="stylesheet" href="css/newschool.css">

</head>

The default layout template (templates/layout.html) provides some of the same

style sheets and scripts (e.g., jQuery, Bootstrap), but it provides them locally

through webjars instead of lining to content distribution servers on the Internet. It

also includes some additional scripts that are used by CAS features (password

strength meter, geolocation, etc.):

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 292

<head>

<meta charset="UTF-8"/>

<meta http-equiv="X-UA-Compatible" content="IE=edge"/>

<meta name="viewport" content="width=device-width, initial-scal

e=1"/>

<title layout:title-pattern="$CONTENT_TITLE - $LAYOUT_TITLE">CAS

– Central Authentication Service</title>

<link rel="stylesheet" th:href="@{#{webjars.fontawesomemin.css}}"/>

<link type="text/css" rel="stylesheet" th:href="@{#{webjars.bootstr

apmin.css}}"/>

<link type="text/css" rel="stylesheet" th:href="@{#{webjars.latomi

n.css}}"/>

<link rel="stylesheet" th:href="@{${#themes.code('standard.custom.c

ss.file')}}"/>

<link rel="icon" th:href="@{/favicon.ico}" type="image/x-icon"/>

<script type="text/javascript" th:src="@{#{webjars.zxcvbn.js}}"></s

cript>

<script type="text/javascript" th:src="@{#{webjars.jquerymin.j

s}}"></script>

<script type="text/javascript" th:src="@{#{webjars.jqueryui.j

s}}"></script>

<script type="text/javascript" th:src="@{#{webjars.jquerycookie.j

s}}"></script>

<script src="//www.google.com/recaptcha/api.js" async defer th:i

f="${recaptchaSiteKey}"></script>

<script th:src="@{#{webjars.bootstrapmin.js}}"></script>

<script th:inline="javascript">

/*<![CDATA[*/

var trackGeoLocation = /*[[${trackGeoLocation}]]*/ === "true";

var googleAnalyticsTrackingId = /*[[${googleAnalyticsTrackingI

d}]]*/;

if (googleAnalyticsTrackingId != null && googleAnalyticsTrackingI

d != '') {

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObjec

t']=r;i[r]=i[r]||function(){

(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*ne

w Date();a=s.createElement(o),

m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.pa

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 293

rentNode.insertBefore(a,m)

})(window, document, 'script', 'https://www.google-analytic

s.com/analytics.js', 'ga');

ga('create', googleAnalyticsTrackingId, 'auto');

ga('send', 'pageview');

}

/*]]>*/

</script>

</head>

The goal then, is to merge these two <head> elements together, along with some

other appropriate changes, and put them all together in our customized layout

template (templates/newschool/layout.html):

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 294

<head>

<meta charset="UTF-8"/>

<meta http-equiv="X-UA-Compatible" content="IE=edge"/>

<meta name="viewport" content="width=device-width, initial-scal

e=1"/>

<title layout:title-pattern="$CONTENT_TITLE - $LAYOUT_TITLE">

New School SSO

</title>

<!-- JQuery -->

<script type="text/javascript" th:src="@{#{webjars.jquerymin.j

s}}"></script>

<script type="text/javascript" th:src="@{#{webjars.jqueryui.j

s}}"></script>

<script type="text/javascript" th:src="@{#{webjars.jquerycookie.j

s}}"></script>

<!-- Bootstrap -->

<link rel="stylesheet" type="text/css" th:href="@{#{webjars.bootstr

apmin.css}}">

<script th:src="@{#{webjars.bootstrapmin.js}}"></script>

<!-- Material Design for Bootstrap -->

<link rel="stylesheet" th:href="@{${#themes.code('md4b.css.fil

e')}}">

<link rel="stylesheet" th:href="@{${#themes.code('ripples.css.fil

e')}}">

<script th:src="@{${#themes.code('md4b.js.file')}}"></script>

<script th:src="@{${#themes.code('ripples.js.file')}}"></script>

<!-- Material Design fonts -->

<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Robo

to:300,400,500,700">

<link rel="stylesheet" href="//fonts.googleapis.com/icon?family=Mat

erial+Icons">

<!-- 'newschool' theme -->

<link rel="stylesheet" th:href="@{${#themes.code('standard.custom.c

ss.file')}}">

<!-- TNS icons -->

<link rel="icon" type="image/x-icon" th:href="@{${#themes.code('fav

icon.img.file')}}">

<link rel="icon" type="image/png" th:href="@{${#themes.code('applei

con.img.file')}}">

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 295

<script th:if="${recaptchaSiteKey}" async defer

src="//www.google.com/recaptcha/api.js"></script>

<script th:inline="javascript">

/*<![CDATA[*/

var trackGeoLocation = /*[[${trackGeoLocation}]]*/ === "true";

var googleAnalyticsTrackingId = /*[[${googleAnalyticsTrackingI

d}]]*/;

if (googleAnalyticsTrackingId != null && googleAnalyticsTrackingI

d != '') {

(function(i, s, o, g, r, a, m) {

i['GoogleAnalyticsObject'] = r;

i[r] = i[r] || function() {

(i[r].q = i[r].q || []).push(arguments)

}, i[r].l = 1 * new Date();

a = s.createElement(o),

m = s.getElementsByTagName(o)[0];

a.async = 1;

a.src = g;

m.parentNode.insertBefore(a, m)

})(window, document, 'script', 'https://www.google-analytics.co

m/analytics.js', 'ga');

ga('create', googleAnalyticsTrackingId, 'auto');

ga('send', 'pageview');

}

/*]]>*/

</script>

</head>

• Lines 6-8. Adopt the “dual title” format from the CAS server (explained in

How Thymeleaf layouts work (page 268)), but change the layout

component of the title to “New School SSO.”

• Lines 10-17. Pull in the jQuery and Bootstrap packages using the CAS-

provided webjar URLs instead of the Internet content distribution server

URLs we used in the mock-up.

• Lines 19-24. Pull in the Material Design for Bootstrap CSS and JavaScript

files. But instead of hard-coding the paths to these files here as we did in

the mock-up, use Thymeleaf’s #theme.code() function to retrieve them

from values defined in the theme definition file (newschool.properties):

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 296

md4b.css.file: /themes/newschool/css/bootstrap-materia

l-design.min.css

md4b.js.file: /themes/newschool/js/material.min.js

ripples.css.file: /themes/newschool/css/ripples.min.css

ripples.js.file: /themes/newschool/js/ripples.min.js

• Lines 26-28. Pull in the Material Design fonts (used by the Material

Design for Bootstrap package) from Google’s content distribution servers.

• Lines 30-35. Pull in the New School cascading style sheet and the

favicons, again by using Thymeleaf’s #theme.code() function to retrieve

the paths from newschool.properties :

standard.custom.css.file: /themes/newschool/css/newschool.css

favicon.img.file: /themes/newschool/images/favicon.ico

appleicon.img.file: /themes/newschool/images/appleicon.png

• Lines 37-64. Copy the feature-specific scripts from the CAS-provided

layout.html to the new one.

 Note: Webjars allow developers to bundle their client-side web libraries

(JavaScript, CSS, etc.) as JAR files. They don’t change the way the libraries

themselves work, they just make it possible to manage them using

dependency-management tools such as Maven and Gradle. It makes sense

to incorporate the CAS-provided webjar version of a library if one exists to

ensure we’re getting the version that the CAS project supports. But we don’t

need to package our own locally-added web libraries (such as Material

Design for Bootstrap) this way, because we’re not managing them as external

dependencies.

Merging the <body> elements

The default layout template defines a high-level structure for all the web views. It

includes a logo, some content, a footer, and a bottom:

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 297

<body>

<div id="container" class="container">

<div th:replace="fragments/logo"/>

<div layout:fragment="content" id="content">

<h1/>

<p/>

</div>

<div th:replace="fragments/footer"/>

</div>

<div th:insert="fragments/bottom"/>

</body>

The content part of the page will be populated from a content template, while the

other parts will be taken from re-usable fragments. Our custom layout will use a

similar high-level structure:

<body>

<div class="container-fluid">

<div th:replace="newschool/fragments/logo"/>

</div>

<div id="container" class="container">

<div layout:fragment="content" id="content">

</div>

<div th:replace="newschool/fragments/footer"/>

</div>

<div th:insert="newschool/fragments/bottom"/>

</body>

There are two principal differences between the default layout and ours:

1. The paths to the fragments will be changed from fragments/[fragment-

name] to newschool/fragments/[fragment-name] . By default, Thymeleaf

interprets all relative file paths as if they were rooted at the templates

directory. If we do not make this change, we will be including the

fragments from the default layout (rooted at templates), not our custom

layout (rooted at templates/newschool).

2. We will move our logo from the responsive, fixed-width container that the

other content resides in into its own, fluid-width container. This is a

Bootstrap-specific change that will result in the logo always being as wide

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 298

as the entire browser viewport, regardless of how wide the other page

content is.

Updating the fragments

In addition to updating the content part of the page in the layout template, we need

to make some changes to the re-usable fragments that it includes.

The logo fragment

The default logo fragment (fragments/logo.html) provides an Apereo logo:

<header>

<a id="logo" href="http://www.apereo.org" th:title="#{logo.titl

e}">Apereo

<h1>Apereo Central Authentication Service (CAS)</h1>

</header>

Our custom logo fragment (newschool/fragments/logo.html) will replace this with

the New School SVG logo definition from the mock-up login page:

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 299

<!-- New School header logo lockup -->

<header role="banner" class="tns-header">

<section class="tns-header-region">

<div class="tns-lockup">

<div class="tns-banner text-center">

<h1 class="tns-uname">

<!-- Generator: Adobe Illustrator 18.1.0, SVG Export Plug-I

n.

SVG Version: 6.00 Build 0) -->

<svg xmlns="http://www.w3.org/2000/svg" xml:space="preserv

e"

version="1.1" x="0px" y="0px" viewBox="0 0 224.4 30.2"

enable-background="new 0 0 224.4 30.2"

id="tns-logo-svg">

<g id="Layer_1">

<g>

<rect x="4.4" y="19.7" width="220" height="3.5"/>

<rect x="4.4" y="26.7" width="220" height="3.5"/>

<g>

<path d="M9,3.9v12.4H5V3.9H0V0.3h14v3.6H9z"/>

<path d="M29.7,10.2H19.2v6.1h-4v-16h4v6.1h10.5V0.3h

4v16h-4V10.2z"/>

<path d="M35.5,16.3v-16h11.4v3.6h-7.4v2.7h6V10h-6v

2.7h7.4v3.6H35.5z"/>

<path d="M57.7,6.1h-0.6v10.2h-4v-16h4.7l9.3,10h0.6

v-10h4v16h-4.5L57.7,6.1z"/>

<path d="M73.5,16.3v-16h11.4v3.6h-7.4v2.7h6V10h-6v

2.7h7.4v3.6H73.5z"/>

<path d="M85.2,0.3h4.5l3.5,12.7h0.9l3.2-12.7h7.5l

3.6,12.7h0.9l3-12.7h4.5l-4.4,16h-7.1l-3.7-12.7h-1.1l-3.4,12.7h-7.1L8

5.2,0.3z"/>

<path d="M121.5,5.2c0-3.4,2.7-5.2,6.2-5.2c

2,0,4.2,0.5,5.5,1.2l-0.8,3.4c-1.3-0.8-3.3-1.2-4.9-1.2

c-1.2,0-2.1,0.5-2.1,1.3c0,2.6,8.2,1.1,8.2,6.5c0,2.9-2,5.4-6.3,5.4

c-1.8,0-3.9-0.2-5.5-1L122,12c1.7,0.8,3.5,1.3,5.5,1.3c

1.8,0,2.2-0.6,2.2-1.4C129.7,9.5,121.5,10.9,121.5,5.2z"/>

<path d="M146.9,16.1c-1.3,0.5-2.4,0.5-4.2,0.5

c-5,0-8.3-3.9-8.3-8.3c0-4.5,3.5-8.3,8.7-8.3c1.3,0,2.8,0,4.1,0.5

l-0.4,3.6c-1.4-0.5-2.4-0.5-3.6-0.5c-3,0-4.7,1.7-4.7,4.7c

0,3,2,4.7,4.8,4.7c1.8,0,2.4-0.2,3.6-0.6V16.1z"/>

<path d="M163.2,10.2h-10.5v6.1h-4v-16h4v6.1h10.5V

0.3h4v16h-4V10.2z"/>

<path d="M177.8,0c5.5,0,9.5,2.8,9.5,8.2c

0,5.6-4.3,8.4-9.5,8.4c-5.2,0-9.5-2.8-9.5-8.4C168.2,3,172.1,0,177.8,0

z M177.7,13.3c3.1,0,5.4-1.6,5.4-5.1c0-3.2-2.3-4.8-5.4-4.8

s-5.4,1.6-5.4,4.9C172.4,11.7,174.6,13.3,177.7,13.3z"/>

<path d="M197.5,0c5.5,0,9.5,2.8,9.5,8.2c

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 300

0,5.6-4.3,8.4-9.5,8.4c-5.2,0-9.5-2.8-9.5-8.4C187.9,3,191.8,0,197.5,0

z M197.4,13.3c3.1,0,5.4-1.6,5.4-5.1c0-3.2-2.3-4.8-5.4-4.8

s-5.4,1.6-5.4,4.9C192.1,11.7,194.3,13.3,197.4,13.3z"/>

<path d="M208,0.3h4v12.2h12.4v3.8H208V0.3z"/>

</g>

</g>

</g>

</svg>

</h1> <!-- tns-uname -->

</div> <!-- tns-banner -->

</div> <!-- tns-lockup -->

</section> <!-- tns-header-region -->

</header> <!-- tns-header -->

The footer fragment

The default footer fragment (fragments/footer.html) provides a copyright

message and a “powered by” line that includes the CAS server version information

(note the use of Thymeleaf text modifiers and value substitutions):

<footer>

<div id="copyright" class="container">

<p th:utext="#{copyright}"></p>

<p>Powered by

Apereo Central Authentication Service

<span th:text="${T(org.apereo.cas.util.CasVersion).getVersio

n()}">

<span th:text="${T(org.apereo.cas.util.CasVersion).getDateTim

e()}">

</p>

</div>

</footer>

We don’t want to provide detailed information about the server on the login page,

and arguably, we shouldn’t be providing a copyright message there either since

we’ll be fronting third-party services that aren’t our intellectual property, so… we

can just dispense with the footer all together by commenting it out in our custom

fragment (newschool/fragments/footer.html):

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 301

<!--

<footer>

<div id="copyright" class="container">

<p th:utext="#{copyright}"></p>

<p>Powered by

Apereo Central Authentication Service

<span th:text="${T(org.apereo.cas.util.CasVersion).getVersio

n()}">

<span th:text="${T(org.apereo.cas.util.CasVersion).getDateTim

e()}">

</p>

</div>

</footer>

-->

The bottom fragment

The bottom fragment, as envisioned by the CAS developers, is used to include

JavaScript code that should not be executed until the entire page has loaded. They

use this to check that several of the packages they need are loaded, and use a

package called HeadJS to load them if they’re not:

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 302

http://headjs.com/

<script th:src="@{#{webjars.headmin.js}}"></script>

<script type="text/javascript" th:src="@{${#themes.code('cas.javascri

pt.file')}}"></script>

<script th:inline="javascript">

head.ready(document, function () {

if (!window.jQuery) {

var jqueryUrl = /*[[@{#{webjars.jquerymin.js}}]]*/;

head.load(jqueryUrl, loadjQueryUI);

} else {

notifyResourcesAreLoaded(resourceLoadedSuccessfully);

}

});

function loadjQueryUI() {

var jqueryUrl = /*[[@{#{webjars.jqueryui.js}}]]*/;

head.load(jqueryUrl, loadjQueryCookies);

}

function loadjQueryCookies() {

var jqueryUrl = /*[[@{#{webjars.jquerycookie.js}}]]*/;

head.load(jqueryUrl, notifyResourcesAreLoaded(resourceLoadedS

uccessfully));

}

function notifyResourcesAreLoaded(callback) {

if (typeof callback === "function") {

callback();

}

}

</script>

For our custom bottom fragment, we will add two things:

1. We specifically include the default theme’s cas.js , so that we don’t have

to duplicate those functions in our own newschool.js file. This approach

allows us to benefit from any fixes/updates the CAS developers make to

these functions; if we copied them into newschool.js we would not

receive those updates (unless we manually checked for and applied them)

.

2. We call the Material Design for Bootstrap library’s init() function.

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 303

<script th:src="@{#{webjars.headmin.js}}"></script>

<script th:src="@{/js/cas.js}"></script>

<script type="text/javascript" th:src="@{${#themes.code('cas.javascri

pt.file')}}"></script>

<script th:inline="javascript">

head.ready(document, function () {

if (!window.jQuery) {

var jqueryUrl = /*[[@{#{webjars.jquerymin.js}}]]*/;

head.load(jqueryUrl, loadjQueryUI);

} else {

notifyResourcesAreLoaded(resourceLoadedSuccessfully);

}

});

function loadjQueryUI() {

var jqueryUrl = /*[[@{#{webjars.jqueryui.js}}]]*/;

head.load(jqueryUrl, loadjQueryCookies);

}

function loadjQueryCookies() {

var jqueryUrl = /*[[@{#{webjars.jquerycookie.js}}]]*/;

head.load(jqueryUrl, notifyResourcesAreLoaded(resourceLoadedSucce

ssfully));

}

function notifyResourcesAreLoaded(callback) {

if (typeof callback === "function") {

callback();

}

}

</script>

<script>

$(function () {

$.material.init();

});

</script>

Update the layout template PDF last generated: October 18, 2018

Deploying Apereo CAS Page 304

Update the login view
The CAS login view is built from a content template (casLoginView.html), a

fragment (fragments/loginform.html), and some message strings defined in

messages.properties (or messages_xx.properties or

custom_messages.properties). When the content template is substituted into the

Thymeleaf layout template (layout.html), the result will be the CAS login page

that is displayed to the user.

Updating the login view content template

The default login view (templates/casLoginView.html) defines two columns on

the page: the left-hand column contains the actual login dialog box, and the right-

hand column contains a number of “additional information” boxes. All of these

elements are defined by different fragments.

<!DOCTYPE html>

<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout" layou

t:decorate="~{layout}">

<head>

<title th:text="#{cas.login.pagetitle}"></title>

</head>

<body id="cas" class="login">

<div layout:fragment="content">

<div class="row">

<div id="notices" class="col-sm-12 col-md-6 col-md-push-6">

<div th:replace="fragments/insecure"/>

<div th:replace="fragments/defaultauthn"/>

<div th:replace="fragments/cookies"/>

<div th:replace="fragments/serviceui"/>

<div th:replace="fragments/cas-resources-list" />

<div th:replace="fragments/loginProviders" />

</div>

<div class="col-sm-12 col-md-6 col-md-pull-6">

<div th:replace="fragments/loginform" />

</div>

</div>

</div>

</body>

</html>

Update the login view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 305

As a reminder, this looks something like this (not all of the fragments in the right-

hand column are displayed by default):

Figure 26. The default CAS server login page

Our login view (templates/newschool/casLoginView.html) will be a little simpler,

with just one fragment, the login dialog box:

<!DOCTYPE html>

<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout" layou

t:decorate="~{newschool/layout}">

<head>

<title th:text="#{cas.login.pagetitle}"></title>

</head>

<body id="cas" class="login">

<div layout:fragment="content">

<div class="row">

<div class="col-sm-12 col-md-4 col-md-offset-4">

<div th:replace="newschool/fragments/loginform"/>

</div>

</div>

</div>

</body>

</html>

Update the login view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 306

As explained previously, Thymeleaf interprets all relative file paths as if they were

rooted at the templates directory. Therefore, aside from removing the extra

fragments that we’re not going to use, we have to make two other changes in our

template:

1. In the layout:decorate attribute of the <html> tag, we will replace

~{layout} with ~{newschool/layout} . If we do not make this change,

our content template will be applied to the default layout template

(templates/layout.html) rather than our custom layout (templates/

newschool/layout.html).

2. In the th:replace attribute of the inner-most <div> tag, we will replace

fragments/loginform with newschool/fragments/loginform . If we did

not make this change, the default login form fragment would be included

instead of our customized version.

Updating the login form fragment

To create our login form fragment (templates/newschool/fragments/

loginform.html), we will start with the “login form box” section of the mock-up

page. From there, we will replace “hard coded” text strings with references to

message property names, and incorporate any “interesting” or “desirable” features

from the default login form fragment or one of the other fragments that our login

view is not including. The result will be something like this:

Update the login view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 307

<div class="well" id="login">

<header class="tns-header">

<div class="tns-banner">

<h2 class="tns-sitename">Single Sign-On</h2>

</div>

</header>

<h1 th:text="#{cas.login.pagetitle}"></h1>

<div class="registered-service" th:if="${registeredService}">

<div th:if="${serviceUIMetadata}">

<p>to continue to

</p>

</div>

<div th:unless="${serviceUIMetadata}">

<p>to continue to

</p>

</div>

</div> <!-- registered-service -->

<form method="post" id="fm1" th:object="${credential}" action="logi

n">

<div class="alert-row">

<div class="alert alert-danger" th:if="${#fields.hasError

s('*')}">

<span th:each="err : ${#fields.errors('*')}" th:utext="${er

r}"/>

</div>

</div> <!-- alert-row -->

<div class="form-group label-floating is-empty">

<label class="control-label" for="username"

th:utext="#{screen.welcome.label.netid}"/>

<div th:if="${openIdLocalId}">

<input type="hidden"

id="username"

name="username"

th:value="${openIdLocalId}"/>

</div>

<div th:unless="${openIdLocalId}">

<input class="required form-control"

id="username"

name="username"

size="25"

Update the login view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 308

tabindex="1"

type="text"

th:disabled="${guaEnabled}"

th:field="*{username}"

th:accesskey="#{screen.welcome.label.netid.accesskey}"

autocomplete="off"/>

</div>

</div> <!-- form-group -->

<div class="form-group label-floating is-empty" style="padding-bo

ttom: 0px">

<label class="control-label" for="password"

th:utext="#{screen.welcome.label.password}"/>

<div>

<input class="required form-control"

type="password"

id="password"

name="password"

size="25"

tabindex="2"

th:accesskey="#{screen.welcome.label.password.accesske

y}"

th:field="*{password}"

autocomplete="off"/>

<div class="capslock-msg">

<p id="capslock-on" style="display: none">

<i class="material-icons">error</i>

</p>

</div>

</div>

</div> <!-- form-group -->

<div class="form-row continue-button" th:if="${recaptchaSiteKe

y}">

<div class="g-recaptcha" th:attr="data-sitekey=${recaptchaSiteK

ey}"/>

</div> <!-- form-row -->

<div class="form-row text-center">

<input type="hidden" name="execution" th:value="${flowExecution

Key}"/>

<input type="hidden" name="_eventId" value="submit"/>

<input type="hidden" name="geolocation"/>

<input class="btn btn-primary btn-lg" style="margin-top: 0px"

name="submit"

accesskey="l"

Update the login view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 309

th:value="#{screen.welcome.button.login}"

tabindex="6"

type="submit"/>

<div class="ripple-container"></div>

</div> <!-- form-row -->

<div class="form-row account-options">

<p>

<a th:href="#{screen.welcome.resetPassword.url}">

<i class="material-icons">lock</i>

</p>

<p>

<a th:href="#{screen.welcome.lookupNetID.url}">

<i class="material-icons">help</i>

</p>

</div> <!-- form-row -->

<div class="form-row text-right privacy-terms">

<a th:href="#{screen.welcome.privacy.url}" target="_blank">

<a th:href="#{screen.welcome.terms.url}" target="_blank">

</div> <!-- form-row -->

</form>

</div>

Some of the changes that will be made from the mock-up include:

• Line 7 (<h1> tag). Replace the hard coded “Log in” with a reference to a

message property.

• Lines 10-19 (registered-service class). Incorporate some Thymeleaf

code from the default serviceui fragment that obtains the name of the

service (as defined in the service registry) the user is attempting to

access. The if / unless sequence tests to see if the service is a

SAML2-based service or a CAS-based service and obtains the name from

the appropriate variable.

• Lines 22-26 (alert-row class). Incorporate some Thymeleaf code from

the default loginform fragment that displays any form input error

Update the login view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 310

messages.

• Lines 28-74 (username and password prompts). Include the more

complex username and password prompt code from the default

loginform fragment. This includes support for OpenID, caps lock

detection, etc.

• Lines 93-115 (links for password reset, NetID lookup, privacy, and

terms). Replace the hard coded text for these links, as well as the links

themselves, with message property references.

Updating the text strings

As noted above, the login form fragment uses message properties for all of its text,

rather than hard coded values. Some of these properties are defined by the default

CAS message bundles (messages.properties for the en locale and

messages_xx.properties for other locales). We need to change the values of

some of these properties to better match our environment (for example, we prefer

the term “NetID” to “Username”). Other properties are specific to our login form and

are not included in the default message bundles; we will have to define those

properties ourselves. We can use the same file to accomplish both of these tasks;

properties defined in the WEB-INF/classes/custom_messages.properties file will

override properties of the same name defined in messages.properties or

messages_xx.properties . So, our custom_messages.properties file will look

something like this:

Update the login view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 311

Just in case (we don't display this currently)

copyright=Copyright © 2018 The New School

Page title

cas.login.pagetitle=Log in

Replace "Username" with "NetID"

screen.welcome.label.netid=NetID:

screen.welcome.label.netid.accesskey=n

Replace "LOGIN" with "Continue"

screen.welcome.button.login=Continue

Text and url for password reset

screen.welcome.resetPassword.url=https://account.newschool.edu/cgi-bi

n/acctservices.pl?f=i&s=pr

screen.welcome.resetPassword.text=Reset your password

Text and url for NetID lookup

screen.welcome.lookupNetID.url=https://account.newschool.edu/cgi-bin/

acctservices.pl?f=i&s=gn

screen.welcome.lookupNetID.text=Look up your NetID

Text and url for the "privacy" link

screen.welcome.privacy.url=//www.newschool.edu/privacy-policy/

screen.welcome.privacy.text=Privacy

Text and url for the "terms" link

screen.welcome.terms.url=//it.newschool.edu/sites/default/files/uploa

ds/documents/Statement%20on%20the%20Responsibilities%20of%20Compute

r%20Users%20v2.1.pdf

screen.welcome.terms.text=Terms

Text to display when caps lock is on

screen.capslock.on=Caps Lock is on

Update the login view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 312

Update the logout view
The logout view is displayed when a user logs out of the CAS service, i.e., when

his or her browser is directed to the /cas/logout endpoint. Unlike the default login

view, the default logout view (templates/casLogoutView.html) does not include

any fragments, it just displays some message text:

<!DOCTYPE html>

<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout" layou

t:decorate="~{layout}">

<head>

<title th:text="#{screen.logout.header}"></title>

</head>

<body id="cas">

<div layout:fragment="content">

<div class="alert alert-success">

<h2 th:utext="#{screen.logout.header}"/>

<p th:utext="#{screen.logout.success}"/>

<p th:utext="#{screen.logout.security}" />

</div>

</div>

</body>

</html>

Updating the logout view template

For our custom logout view (templates/newschool/casLogoutView.html), the only

change we really need to make is to replace the default layout template with our

custom template:

<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout" layou

t:decorate="~{newschool/layout}">

Although not strictly necessary, we will also change a couple of the text strings to

better match our local environment. We can do this by overriding their values in

WEB-INF/classes/custom_messages.properties :

Update the logout view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 313

screen.logout.success=You have successfully logged out of the New Sch

ool \

Single Sign-On Service. You may log in again.

screen.logout.security=For security reasons, please exit your web bro

wser.

Update the logout view PDF last generated: October 18, 2018

Deploying Apereo CAS Page 314

Update other relevant views
Once the layout template and the login view have been customized, most of the

difficult user interface customization work is done. However, there are a number of

other views that should be customized to maintain a consistent look and feel. At a

minimum, these views should be modified to use the custom Thymeleaf layout

template instead of the default:

<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout" layou

t:decorate="~{newschool/layout}">

Depending on the particular view, it may also be desirable to update some of the

text displayed in the view by redefining the relevant properties in WEB-INF/

classes/custom_messages.properties .

Views that may need to be customized

Some of the likely candidates in templates/newschool for customization include:

• Generic views. CAS provides a “generic success” view

(casGenericSuccessView.html) that is displayed when a user logs directly

into the CAS server without having been directed there by another service

(much like we did when first building the server). It also provides a “service

error” view (casServiceErrorView.html) that is displayed when there is

an error with the service (usually an attempt to use a service that is not in

the service registry).

• MFA views. CAS provides one or more views for each multi-factor

authentication product that it supports: casDuoLoginView.html ,

casGoogleAuthenticatorLoginView.html ,

casGoogleAuthenticatorRegistrationView.html , etc. Since these

become part of the login web flow, they should have the same look and

feel as the “base” login page.

• LPEE views. CAS provides views for the various LDAP Password Policy

Enforcement (LPPE) outcomes: casAccountDisabledView.html ,

casAccountLockedView.html , casExpiredPassView.html , etc. These

become part of the login web flow if LPPE support is enabled.

• Password management views. CAS provides several views associated

with its (optional) user password management features:

casMustChangePassView.html , casPasswordUpdateSuccessView.html ,

casResetPasswordSendInstructionsView.html , etc. These may also

Update other relevant views PDF last generated: October 18, 2018

Deploying Apereo CAS Page 315

become part of the login web flow.

There are a variety of other views included with CAS that are not mentioned above;

generally, any feature that will result in interaction with a user will have a view (or

multiple views) associated with it. The files containing the views are, for the most

part, named in a manner that should make it obvious which feature they belong to.

It’s only necessary to update those views that belong to enabled features.

Error views

The templates/newschool/error.html view is used to display a variety of error

messages that may occur during interaction with the user; this view should be

customized as appropriate.

The views in the templates/newschool/error subdirectory (401.html , 403.html ,

404.html , 405.html , and 423.html) are displayed by Tomcat when the

associated HTTP error occurs; these should be customized with at least the

custom layout template.

Dashboard views

The templates/newschool/monitoring subdirectory contains the views associated

with the CAS dashboard (admin pages). These pages come with their own layout

template (templates/newschool/monitoring/layout.html); they do not use the

same template as the “user” views. It’s not necessary to customize these views,

but it may be desirable depending on the audience that will be using them.

Update other relevant views PDF last generated: October 18, 2018

Deploying Apereo CAS Page 316

Install and test the final result
Once the custom theme files have been finalized (or at least reached a steady

intermediate state), they can be copied back into the overlay and the CAS server

can be rebuilt and deployed for more extensive testing.

Copy the “live” files back into the overlay

To begin, the “live” copy of the custom theme files must be copied back into the

overlay. Run the commands

casdev-master# cd /opt/workspace/cas-overlay

casdev-master# cd src/resources

casdev-master# ssh casdev-srv01 "cd /var/lib/tomcat/cas/WEB-INF/class

es; tar cf - newschool.properties custom_messages.properties static/t

hemes/newschool templates/newschool" | tar xf -

casdev-master# chown -R root.root .

casdev-master# chmod -R og+rX .

on the master build server (casdev-master) to copy the “live” files from the server

where they were being edited (casdev-srv01 in the example) back into the overlay.

Rebuild the server

Run Maven to rebuild the server to include the new theme and view files:

Install and test the final result PDF last generated: October 18, 2018

Deploying Apereo CAS Page 317

casdev-master# cd ../..

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 01:00 min

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 35M/84M

[INFO]

casdev-master#

Install and test on the master build server

Use the scripts created earlier (page 99) (or repeat the commands) to install the

updated CAS configuration files on the master build server (casdev-master):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install and test the final result PDF last generated: October 18, 2018

Deploying Apereo CAS Page 318

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the scripts created earlier (page 99):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Shut down all but one of the pool servers

Operating CAS with a pool of servers instead of a single server requires special

configuration. Because that configuration hasn’t been completed yet, testing must

be performed against a single server. Further, since we’re going to be editing the

CSS, JavaScript, and HTML files and looking for those changes, we want to make

sure we’re accessing the same server (the one where we’re editing the files) every

time. Therefore, the other servers in the pool should be shut down so that the load

balancer will direct all traffic to that single server. Run the command

systemctl stop tomcat

on all but one of the CAS servers (casdev-srvXX) to temporarily take those

servers out of the pool.

Install and test the final result PDF last generated: October 18, 2018

Deploying Apereo CAS Page 319

Commit changes to Git
Before moving on to the next stage of development, commit the new custom user

interface files to Git to make changes easier to keep track of (and to enable

reverting to earlier configurations easier). Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add src

casdev-master# git commit -m "Created New School-branded user interfa

ce"

[master (root-commit) e2cb175] Created New School-branded user interf

ace

137 files changed, 5243 insertions(+)

create mode 100644 src/main/resources/custom_messages.properties

create mode 100644 src/main/resources/newschool.properties

create mode 100644 src/main/resources/static/themes/newschool/css/ad

min.css

(lots of output...)

create mode 100644 src/main/resources/templates/newschool/protocol/o

penid/casOpenIdServiceFailureView.html

create mode 100644 src/main/resources/templates/newschool/protocol/o

penid/casOpenIdServiceSuccessView.html

create mode 100644 src/main/resources/templates/newschool/protocol/o

penid/user.html

casdev-master#

on the master build server (casdev-master).

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 320

High availability

Summary: Now that everything is working correctly in a single-server

environment, the steps to enable multiple servers to operate in a

pooled configuration can be performed.

As explained in the introduction (page 9), one of the implementation goals for this

environment is to have “high availability (fault-tolerant) everything.” To that end, the

environment has been built with a pool of servers (casdev-srv01, casdev-srv02,

and casdev-srv03) behind a load balancer. To enable these servers to work

together in an active-active configuration, where any server in the pool is capable

of servicing any request and the pool can continue to service requests even if one

or more servers is unavailable, the following tasks must be performed:

1. A distributed ticket registry (cache) that replicates all tickets to all servers

must be created to ensure that a ticket can be located from any server (the

server that is asked to validate a ticket may not be the same server that

originally created it).

2. A distributed service registry that replicates all registered services to all

servers must be created to ensure that all servers support the same set of

services.

3. Distributed storage for CAS SAML IdP metadata must be created to

ensure that all the servers behave the same way, and distributed storage

for cached SAML SP metadata must be created to ensure that all servers

know about all SPs.

4. A distributed configuration property storage solution that replicates all

configuration settings to all servers must be created to ensure that all

servers are configured the same way.

CAS 5 supports a variety of caches, databases, and configuration servers to

implement ticket registries, service registries, and configuration property storage.

For our implementation, we will use the MongoDB NoSQL database, which offers

a lightweight implementation with built-in replication and fault tolerance features

that can be installed on the same virtual machines that we’re using to run the CAS

servers.

References

• CAS 5: Ticketing

• CAS 5: Service Management

High availability PDF last generated: October 18, 2018

Deploying Apereo CAS Page 321

https://www.mongodb.com/
https://apereo.github.io/cas/5.2.x/installation/Configuring-Ticketing-Components.html
https://apereo.github.io/cas/5.2.x/installation/Service-Management.html

• CAS 5: Configuration Server

High availability PDF last generated: October 18, 2018

Deploying Apereo CAS Page 322

https://apereo.github.io/cas/5.2.x/installation/Configuration-Server-Management.html

Install and configure MongoDB

Summary: MongoDB will be used to store the ticket registry, service

registry, and configuration properties for all CAS servers in the

environment.

MongoDB is an open-source NoSQL database. MongoDB stores data records as

JSON-like documents that contain field-value pairs. The value of a field can be any

of several different data types such as numbers, strings, booleans, dates, objects,

and arrays. In MongoDB, databases hold collections of documents. Collections are

somewhat analogous to tables in relational databases, but a collection does not

require its documents to have the same schema; i.e. the documents in a single

collection do not all have to have the same set of fields and the data type for a field

can differ from one document to another within a collection.

MongoDB is a distributed database by design, so high availability, horizontal

scaling, and geographic distribution are built in and easy to use. A replica set is a

group of MongoDB instances that manage the same data set (group of databases).

Replica sets provide redundancy and high availability, and are the basis for all

production MongoDB deployments. A replica set contains multiple data storage

nodes and, optionally, an arbiter node (used when needed to ensure there are an

odd number of members in the replica set).

One and only one of the data storage nodes is deemed the primary node, and the

others are deemed secondary nodes (or arbiters). The primary node receives all

write operations (and usually, all read operations as well). The primary records all

changes to its data set in a transaction log. The secondary nodes copy and apply

these changes in an asynchronous process, resulting in the same data set being

stored on multiple servers. If the primary server is unavailable, the secondaries will

hold an election to elect one of themselves as the new primary.

In this section, we will install the latest, stable version of MongoDB on each of the

CAS servers in the environment (casdev-srv01, casdev-srv02, and casdev-

srv03), and then group those servers together as a replica set. We will also

implement security controls to prevent access to the servers (and their data) from

unauthorized sources, since some of the data stored in the database may be

sensitive (e.g., passwords in configuration properties).

Install and configure MongoDB PDF last generated: October 18, 2018

Deploying Apereo CAS Page 323

https://www.mongodb.com/

Install the MongoDB software
Red Hat does not offer an up-to-date version of MongoDB on RHEL 7, but

MongoDB, Inc. offers its own set of repositories from which the most current

version can be installed.

 Note: Although the master build server will not be a member of the replica

set, the MongoDB software will be installed there to facilitate customizing

configuration files and distributing them to the replica set members, and to

enable use of the mongo shell client application. In each section below,

instructions are provided to indicate on which server(s) that step should be

performed.

Install the MongoDB repository

As of this writing the latest, stable version of MongoDB is 3.6, originally released in

December 2017. To install MongoDB 3.6 with yum , create the file /etc/

yum.repos.d/mongodb-org-3.6.repo on the master build server (casdev-master)

with the following contents:

[mongodb-org-3.6]

name=MongoDB Repository

baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/

3.6/x86_64/

gpgcheck=1

enabled=1

gpgkey=https://www.mongodb.org/static/pgp/server-3.6.asc

Then copy the new file to each of the CAS servers by running the commands

Install the MongoDB software PDF last generated: October 18, 2018

Deploying Apereo CAS Page 324

casdev-master# for i in 01 02 03

> do

> scp -p /etc/yum.repos.d/mongodb-org-3.6.repo casdev-srv${i}:/etc/yu

m.repos.d/mongodb-org-3.6.repo

> done

mongodb-org-3.6.repo 100% 200 273.9KB/

s 00:00

mongodb-org-3.6.repo 100% 200 251.1KB/

s 00:00

mongodb-org-3.6.repo 100% 200 255.4KB/

s 00:00

casdev-master#

Install MongoDB

Run the command

yum -y install mongodb-org

on the master build server (casdev-master) and each of the CAS servers

(casdev-srv01, casdev-srv02, and casdev-srv03) to install MongoDB.

Correct directory permissions

The default MongoDB installation creates the MongoDB data directory and

MongoDB log directory with permissions that allow all users on the system to

access them. However, only the mongod user and mongod group actually need

access to these directories, so access for other users should be removed. Run the

command

chmod -R o= /var/lib/mongo /var/log/mongodb

on the master build server (casdev-master) and each of the CAS servers

(casdev-srv01, casdev-srv02, and casdev-srv03) to correct the directory

permissions.

Install the MongoDB software PDF last generated: October 18, 2018

Deploying Apereo CAS Page 325

Configure logrotate

By default, mongod will keep writing to the same log file until it is told not to; there

is no pre-configured scheme for rotating logs. To correct this, configure the

logroate program, which is probably already being used to rotate various system

log files, to rotate /var/log/mongodb/mongod.log as well.

Create the file /etc/logrotate.d/mongod on the master build server (casdev-

master) with the following contents:

/var/log/mongodb/mongod.log

{

daily

dateext

dateformat -%Y-%m-%d

dateyesterday

extension .log

missingok

notifempty

rotate 30

create 0640 mongod mongod

sharedscripts

postrotate

/bin/kill -SIGUSR1 $(cat /var/run/mongodb/mongod.pid)

endscript

}

This will rotate mongod.log every day, moving the current log file to mongod-YYYY-

MM-DD.log . Since logrotate typically runs in the wee hours of the morning, the

dateyesterday directive tells it to use yesterday’s date for the file name, since

that’s when most of the log entries will come from. The last 30 days’ worth of log

files will be kept; older files will be deleted automatically. Once the file has been

rotated, logrotate will signal mongod to switch to the new log file.

Run the command

Install the MongoDB software PDF last generated: October 18, 2018

Deploying Apereo CAS Page 326

casdev-master# logrotate -df /etc/logrotate.d/mongod

reading config file /etc/logrotate.d/mongod

extension is now .log

Allocating hash table for state file, size 15360 B

Handling 1 logs

rotating pattern: /var/log/mongodb/mongod.log

forced from command line (30 rotations)

empty log files are not rotated, old logs are removed

considering log /var/log/mongodb/mongod.log

log needs rotating

rotating log /var/log/mongodb/mongod.log, log->rotateCount is 30

Converted ' -%Y-%m-%d' -> '-%Y-%m-%d'

dateext suffix '-2018-04-29'

glob pattern '-[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]'

glob finding old rotated logs failed

fscreate context set to system_u:object_r:mongod_log_t:s0

renaming /var/log/mongodb/mongod.log to /var/log/mongodb/mongod-201

8-04-29.log

creating new /var/log/mongodb/mongod.log mode = 0640 uid = 994 gid =

992

running postrotate script

running script with arg /var/log/mongodb/mongod.log

: "

/bin/kill -SIGUSR1 $(cat /var/run/mongodb/mongod.pid)

"

casdev-master#

to check the syntax of the file and confirm that it will do what you expect. Then

copy the new file to each of the CAS servers by running the commands

casdev-master# for i in 01 02 03

> do

> scp -p /etc/logrotate.d/mongod casdev-srv${i}:/etc/logrotate.d/mong

od

> done

mongod 100% 293 400.8KB/

s 00:00

mongod 100% 293 363.6KB/

s 00:00

mongod 100% 293 397.7KB/

s 00:00

casdev-master#

Install the MongoDB software PDF last generated: October 18, 2018

Deploying Apereo CAS Page 327

Disable the mongod service on the master build server

Since the master build server will not be part of the replica set, it does not need to

run the MongoDB server (mongod). Run the command

casdev-master# systemctl disable mongod

Removed symlink /etc/systemd/system/multi-user.target.wants/mongod.se

rvice.

casdev-master#

on the master build server (casdev-master) to prevent mongod from being started

when the system boots.

References

MongoDB: Install MongoDB Community Edition on Red Hat Enterprise or CentOS

Linux

Install the MongoDB software PDF last generated: October 18, 2018

Deploying Apereo CAS Page 328

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat/

Disable Transparent Huge Pages

 Note: This step is only necessary when running MongoDB on Linux

servers (physical or virtual).

Transparent Huge Pages (THP) is a Linux memory management feature designed

to reduce the overhead of translation lookaside buffer (page table) lookups on

machines with large amounts of memory by using larger virtual memory pages.

However, THP often causes performance problems for database workloads,

because they tend to have sparse, rather than contiguous, memory access

patterns. MongoDB, Inc. recommends disabling THP on servers running

MongoDB.

Define a service unit to disable THP

Create a file on the master build server (casdev-master) called /etc/systemd/

system/mongod-disable-thp.service with the following contents:

[Unit]

Description="Disable Transparent Huge Pages (THP) before mongod start

s"

Before=mongod.service

[Service]

Type=oneshot

ExecStart=/bin/sh -c 'echo never > /sys/kernel/mm/transparent_hugepag

e/enabled'

ExecStart=/bin/sh -c 'echo never > /sys/kernel/mm/transparent_hugepag

e/defrag'

[Install]

RequiredBy=mongod.service

Install and enable the service unit

Run the commands

Disable Transparent Huge Pages PDF last generated: October 18, 2018

Deploying Apereo CAS Page 329

casdev-master# restorecon /etc/systemd/system/mongod-disable-thp.serv

ice

casdev-master# chmod 644 /etc/systemd/system/mongod-disable-thp.servi

ce

casdev-master# for i in 01 02 03

> do

> scp -p /etc/systemd/system/mongod-disable-thp.service casdev-sr

v${i}:/etc/systemd/system/mongod-disable-thp.service

> ssh casdev-srv${i} systemctl enable mongod-disable-thp

> done

mongod-disable-thp.service 100% 321 984.7KB/

s 00:00

Created symlink from /etc/systemd/system/mongod.service.requires/mong

od-disable-thp.service to /etc/systemd/system/mongod-disable-thp.serv

ice.

mongod-disable-thp.service 100% 321 1.0MB/

s 00:00

Created symlink from /etc/systemd/system/mongod.service.requires/mong

od-disable-thp.service to /etc/systemd/system/mongod-disable-thp.serv

ice.

mongod-disable-thp.service 100% 321 441.2KB/

s 00:00

Created symlink from /etc/systemd/system/mongod.service.requires/mong

od-disable-thp.service to /etc/systemd/system/mongod-disable-thp.serv

ice.

casdev-master#

to copy the service unit to the CAS servers and enable it to be executed by

systemd . Do not enable the service unit on the master build server (casdev-

master), since mongod will not be running there.

References

MongoDB: Disable Transparent Huge Pages (THP)

Disable Transparent Huge Pages PDF last generated: October 18, 2018

Deploying Apereo CAS Page 330

https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/

Open MongoDB port in the firewall
To enable the mongod processes in the replica set to communicate with each other,

the MongoDB port (TCP 27017) must be opened in the firewall on each of the CAS

servers (casdev-srv01, casdev-srv02, and casdev-srv03).

Create a firewalld service configuration

First, create a firewalld service configuration file on the master build server

(casdev-master) called /etc/firewalld/services/mongod.xml with the following

contents:

<?xml version="1.0" encoding="utf-8"?>

<service>

<short>mongod</short>

<description>MongoDB default port for mongod and mongos instance

s.</description>

<port protocol="tcp" port="27017"/>

</service>

to define the service, and then run the commands

casdev-master# restorecon /etc/firewalld/services/mongod.xml

casdev-master# chmod 640 /etc/firewalld/services/mongod.xml

casdev-master# firewall-cmd --reload

success

casdev-master#

to assign the correct SELinux context and file permissions to the mongod.xml file

and inform firewalld of its existence. Then copy the new file to each of the CAS

servers and inform their firewalld processes of its existence by running the

commands

Open MongoDB port in the firewall PDF last generated: October 18, 2018

Deploying Apereo CAS Page 331

casdev-master# for i in 01 02 03

> do

> scp -p /etc/firewalld/services/mongod.xml casdev-srv${i}:/etc/firew

alld/services/mongod.xml

> ssh casdev-srv${i} firewall-cmd --reload

> done

mongod.xml 100% 205 309.3KB/

s 00:00

success

mongod.xml 100% 205 320.6KB/

s 00:00

success

mongod.xml 100% 205 333.8KB/

s 00:00

success

casdev-master#

Configure the firewall

Because some of the information stored in MongoDB may be sensitive (e.g.,

passwords in configuration properties), we will only open the MongoDB port in the

firewall to connections from the CAS servers and the master build server.

Create an ipset of source addresses

A firewalld ipset is a named list of IP addresses that can be referenced in

firewall rules. We will define an ipset called cas-servers that contains the

addresses of the master build server and the CAS servers, which can be used to

create the firewall rule in the next section. Run the commands

Open MongoDB port in the firewall PDF last generated: October 18, 2018

Deploying Apereo CAS Page 332

firewall-cmd --permanent --new-ipset=cas-servers --type=hash:net

success

firewall-cmd --reload

success

firewall-cmd --permanent --ipset=cas-servers --add-entry=192.168.10

0.100

success

firewall-cmd --permanent --ipset=cas-servers --add-entry=192.168.10

0.101

success

firewall-cmd --permanent --ipset=cas-servers --add-entry=192.168.10

0.102

success

firewall-cmd --permanent --ipset=cas-servers --add-entry=192.168.10

0.103

success

firewall-cmd --reload

success

#

on each of the three CAS servers (casdev-srv01, casdev-srv02. and casdev-

srv03). It is not necessary to define the ipset on the master build server (casdev-

master), since it will not be running mongod .

Create a rich rule to enable access

In addition to command-line arguments that allow the creation of basic allow/deny

rules, firewalld supports a rich rule language for creating more complex rules.

The rich language extends the basic set of elements (service, port, etc.) with

additional elements, such as source and destination addresses, logging, actions

and limits for logs and actions. We will use a rich rule to limit connections to the

mongod port to the IP addresses in the cas-servers ipset defined above. Run the

commands

firewall-cmd --permanent --zone=public --add-rich-rule='rule famil

y="ipv4" source ipset="cas-servers" service name="mongod" accept'

success

firewall-cmd --reload

success

#

Open MongoDB port in the firewall PDF last generated: October 18, 2018

Deploying Apereo CAS Page 333

on each of the three CAS servers (casdev-srv01, casdev-srv02. and casdev-

srv03). It is not necessary to install the rule on the master build server (casdev-

master), since it will not be running mongod .

References

• Firewalld: IP Sets

• Firewalld: Rich Rule Language

Open MongoDB port in the firewall PDF last generated: October 18, 2018

Deploying Apereo CAS Page 334

http://www.firewalld.org/documentation/man-pages/firewalld.ipset.html
http://www.firewalld.org/documentation/man-pages/firewalld.richlanguage.html

Set up MongoDB authentication
MongoDB provides an internal authentication feature that, when enabled, will

require the individual members of the replica set to authenticate to each other.

MongoDB also provides role-based access control, which requires client

applications (and users) to authenticate to the database with a username and

password, and then sets limits on the database(s) each user may access, and the

operations the user may perform there. Both of these features will be used to

protect the data stored in the CAS MongoDB instance.

Create an administrative user

On one of the replica set members (e.g., casdev-srv01), start mongod by running

the commands

casdev-srv01# systemctl start mongod-disable-thp

casdev-srv01# systemctl start mongod

 Note: Make sure you are using one of the replica set members (CAS

servers), not the master build server (casdev-master).

On the same server, run the mongo shell to connect to the server:

casdev-srv01# mongo

MongoDB shell version v3.6.0

connecting to: mongodb://127.0.0.1:27017

MongoDB server version: 3.6.0

Server has startup warnings:

YYYY-MM-DDTHH:MM:SS.sss-0000 I CONTROL [initandlisten]

YYYY-MM-DDTHH:MM:SS.sss-0000 I CONTROL [initandlisten] ** WARNING: A

ccess control is not enabled for the database.

YYYY-MM-DDTHH:MM:SS.sss-0000 I CONTROL [initandlisten] ** R

ead and write access to data and configuration is unrestricted.

YYYY-MM-DDTHH:MM:SS.sss-0000 I CONTROL [initandlisten]

>

Administrative users are created in the special admin database. Using the mongo

shell, connect to the admin database and then create an administrative user called

mongoadmin by running the commands

Set up MongoDB authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 335

> use admin

switched to db admin

> db.createUser({ user: "mongoadmin", pwd: "changeit", roles: [{ ro

le: "root", db: "admin" }] })

Successfully added user: {

"user" : "mongoadmin",

"roles" : [

{

"role" : "root",

"db" : "admin"

}

]

}

>

 Warning: The command above uses changeit as the value of the

mongoadmin password. Obviously, something other than this should be used in

a production MongoDB deployment.

Then exit the mongo shell:

> exit

bye

Generate a SCRAM-SHA1 keyfile

To implement internal authentication between the replica set members, MongoDB

supports the Salted Challenge Response Authentication Mechanism (SCRAM-

SHA-1) . To support this, a keyfile containing the shared secret (password) is

created and installed on each replica set member server. Run the command

casdev-master# openssl rand -base64 756 > mongod-auth.key

on the master build server (casdev-master) to generate a random key (password).

Although the master build server is not a member of the replica set, it makes sense

to store a copy of the keyfile there for safekeeping. Then run the commands

Set up MongoDB authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 336

https://tools.ietf.org/html/rfc5802
https://tools.ietf.org/html/rfc5802

casdev-master# tar cf kf.tar --owner=mongod --group=mongod --mode=40

0 mongod-auth.key

casdev-master# for i in 01 02 03

> do

> scp kf.tar casdev-srv${i}:/tmp/kf.tar

> ssh casdev-srv${i} "cd /var/lib/mongo; tar xf /tmp/kf.tar; rm /tmp/

kf.tar"

> done

kf.tar 100% 10KB 437.3KB/

s 00:00

kf.tar 100% 10KB 1.0MB/

s 00:00

kf.tar 100% 10KB 128.4KB/

s 00:00

casdev-master#

to distribute the keyfile to each of the replica set members with the correct owner,

group, and permissions.

Update the MongoDB configuration file

MongoDB uses a YAML-formatted configuration file, /etc/mongod.conf . Edit this

file on the master build server (casdev-master) and make the following changes:

1. In the net section, change the value of the bindIp setting from

127.0.0.1 (listen only on the loopback interface) to 0.0.0.0 (listen on all

interfaces). This will enable the other members of the replica set to

connect to the server.

2. Uncomment the security section and add a keyFile setting with the

path to the keyfile created above (/var/lib/mongo/mongod-auth.key).

3. Also in the security section, add an authorization setting with the

value enabled (this turns on role-based access control).

4. Uncomment the replication section and add a replSetName setting

with the value rs0 .

5. In the systemLog section add a logRotate setting with the value reopen

(this is necessary for the logrotate configuration, created earlier, to work

properly).

After making these changes, the affected sections of the configuration file should

look like this:

Set up MongoDB authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 337

net:

port: 27017

bindIp: 0.0.0.0

security:

keyFile: /var/lib/mongo/mongod-auth.key

authorization: enabled

replication:

replSetName: rs0

systemLog:

logRotate: reopen

Then run the commands

casdev-master# for i in 01 02 03

> do

> scp -p /etc/mongod.conf casdev-srv${i}:/etc/mongod.conf

> ssh casdev-srv${i} "systemctl start mongod-disable-thp; systemctl r

estart mongod"

> done

mongod.conf 100% 813 41.2KB/

s 00:00

mongod.conf 100% 813 53.4KB/

s 00:00

mongod.conf 100% 813 721.3KB/

s 00:00

casdev-master#

to copy the updated configuration file to each member of the replica set and

(re)start the mongod server.

References

• MongoDB: Internal Authentication

• MongoDB: Role-Based Access Control

Set up MongoDB authentication PDF last generated: October 18, 2018

Deploying Apereo CAS Page 338

https://docs.mongodb.com/manual/core/security-internal-authentication/
https://docs.mongodb.com/manual/core/authorization/

Create the replica set
The replica set is created by initiating replication on the replica set member server

where the administrative user was created, and then adding the other replica set

member servers to the set.

Connect with the mongo shell

On the replica set member where the mongoadmin user was created in the

previous section (casdev-srv01 in our case), start the mongo shell again by

running the command

casdev-srv01# mongo -u mongoadmin -p --authenticationDatabase admin

MongoDB shell version v3.6.0

Enter password:

connecting to: mongodb://127.0.0.1:27017

MongoDB server version: 3.6.0

>

and entering the correct password (“ changeit ”).

Initiate the replica set

From the mongo shell, run the command

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 339

> rs.initiate()

{

"info2" : "no configuration specified. Using a default config

uration for the set",

"me" : "casdev-srv01.newschool.edu:27017",

"ok" : 1,

"operationTime" : Timestamp(1512664653, 1),

"$clusterTime" : {

"clusterTime" : Timestamp(1512664653, 1),

"signature" : {

"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAA

AA="),

"keyId" : NumberLong(0)

}

}

}

>

Add members to the replica set

Continuing in the mongo shell, add the other members of the replica set:

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 340

> rs.add("casdev-srv02.newschool.edu")

{

"ok" : 1,

"operationTime" : Timestamp(1512664727, 1),

"$clusterTime" : {

"clusterTime" : Timestamp(1512664727, 1),

"signature" : {

"hash" : BinData(0,"wbhbHdhI1gtR+SWQSh2XARQw9

jw="),

"keyId" : NumberLong("6496845223040122881")

}

}

}

> rs.add("casdev-srv03.newschool.edu")

{

"ok" : 1,

"operationTime" : Timestamp(1512664876, 1),

"$clusterTime" : {

"clusterTime" : Timestamp(1512664876, 1),

"signature" : {

"hash" : BinData(0,"gIrttrr3VzqhM2iIWxX5ITwMI

hI="),

"keyId" : NumberLong("6496845223040122881")

}

}

}

>

Display the replica set configuration

To view the configuration of the replica set, use the rs.conf() command to the

mongo shell:

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 341

> rs.conf()

{

"_id" : "rs0",

"version" : 3,

"protocolVersion" : NumberLong(1),

"members" : [

{

"_id" : 0,

"host" : "casdev-srv01.newschool.edu:27017",

"arbiterOnly" : false,

"buildIndexes" : true,

"hidden" : false,

"priority" : 1,

"tags" : {

},

"slaveDelay" : NumberLong(0),

"votes" : 1

},

{

"_id" : 1,

"host" : "casdev-srv02.newschool.edu:27017",

"arbiterOnly" : false,

"buildIndexes" : true,

"hidden" : false,

"priority" : 1,

"tags" : {

},

"slaveDelay" : NumberLong(0),

"votes" : 1

},

{

"_id" : 2,

"host" : "casdev-srv03.newschool.edu:27017",

"arbiterOnly" : false,

"buildIndexes" : true,

"hidden" : false,

"priority" : 1,

"tags" : {

},

"slaveDelay" : NumberLong(0),

"votes" : 1

}

],

"settings" : {

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 342

"chainingAllowed" : true,

"heartbeatIntervalMillis" : 2000,

"heartbeatTimeoutSecs" : 10,

"electionTimeoutMillis" : 10000,

"catchUpTimeoutMillis" : -1,

"catchUpTakeoverDelayMillis" : 30000,

"getLastErrorModes" : {

},

"getLastErrorDefaults" : {

"w" : 1,

"wtimeout" : 0

},

"replicaSetId" : ObjectId("5a296e4da9fdf50c1fc967ae")

}

}

>

Display the status of the replica set

To display dynamic information about the status of the replica set, use the

rs.status() command instead:

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 343

> rs.status()

{

"set" : "rs0",

"date" : ISODate("YYYY-MM-DDTHH:MM:SS.sssZ"),

"myState" : 1,

"term" : NumberLong(1),

"heartbeatIntervalMillis" : NumberLong(2000),

"optimes" : {

"lastCommittedOpTime" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

},

"readConcernMajorityOpTime" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

},

"appliedOpTime" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

},

"durableOpTime" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

}

},

"members" : [

{

"_id" : 0,

"name" : "casdev-srv01.newschool.edu:27017",

"health" : 1,

"state" : 1,

"stateStr" : "PRIMARY",

"uptime" : 916,

"optime" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

},

"optimeDate" : ISODate("YYYY-MM-DDTHH:MM:SS

Z"),

"electionTime" : Timestamp(1512664653, 2),

"electionDate" : ISODate("2017-12-07T16:37:33

Z"),

"configVersion" : 3,

"self" : true

},

{

"_id" : 1,

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 344

"name" : "casdev-srv02.newschool.edu:27017",

"health" : 1,

"state" : 2,

"stateStr" : "SECONDARY",

"uptime" : 247,

"optime" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

},

"optimeDurable" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

},

"optimeDate" : ISODate("YYYY-MM-DDTHH:MM:SS

Z"),

"optimeDurableDate" : ISODate("YYYY-MM-DDTH

H:MM:SSZ"),

"lastHeartbeat" : ISODate("YYYY-MM-DDTHH:MM:S

S.sssZ"),

"lastHeartbeatRecv" : ISODate("YYYY-MM-DDTH

H:MM:SS.sssZ"),

"pingMs" : NumberLong(0),

"syncingTo" : "casdev-srv01.newschool.edu:270

17",

"configVersion" : 3

},

{

"_id" : 2,

"name" : "casdev-srv03.newschool.edu:27017",

"health" : 1,

"state" : 2,

"stateStr" : "SECONDARY",

"uptime" : 99,

"optime" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

},

"optimeDurable" : {

"ts" : Timestamp(1512664965, 1),

"t" : NumberLong(1)

},

"optimeDate" : ISODate("YYYY-MM-DDTHH:MM:SS

Z"),

"optimeDurableDate" : ISODate("YYYY-MM-DDTH

H:MM:SSZ"),

"lastHeartbeat" : ISODate("YYYY-MM-DDTHH:MM:S

S.sssZ"),

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 345

"lastHeartbeatRecv" : ISODate("YYYY-MM-DDTH

H:MM:SS.sssZ"),

"pingMs" : NumberLong(0),

"syncingTo" : "casdev-srv01.newschool.edu:270

17",

"configVersion" : 3

}

],

"ok" : 1,

"operationTime" : Timestamp(1512664965, 1),

"$clusterTime" : {

"clusterTime" : Timestamp(1512664965, 1),

"signature" : {

"hash" : BinData(0,"wGZmpqOqx1Xz1XDrsa2129JA

d+c="),

"keyId" : NumberLong("6496845223040122881")

}

}

}

>

The members[n].stateStr element indicates, for each member, whether it is the

primary or a secondary member of the replica set.

Display current replication status

To display the current status of replicating data from the primary to the slave

(secondary) servers, use the rs.printSlaveReplicationInfo() command:

> rs.printSlaveReplicationInfo()

source: casdev-srv02.newschool.edu:27017

syncedTo: Ddd MMM DD YYYY HH:MM:DD GMT-0500 (EST)

0 secs (0 hrs) behind the primary

source: casdev-srv03.newschool.edu:27017

syncedTo: Ddd MMM DD YYYY HH:MM:DD GMT-0500 (EST)

0 secs (0 hrs) behind the primary

>

Exit the mongo shell

Exit the mongo shell:

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 346

> exit

bye

References

• MongoDB: Deploy Replica Set With Keyfile Access Control

• Linode: Create a MongoDB Replica Set

Create the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 347

https://docs.mongodb.com/manual/tutorial/deploy-replica-set-with-keyfile-access-control/
https://www.linode.com/docs/databases/mongodb/create-a-mongodb-replica-set

Test the replica set
To verify that replication is working, we will create some test data on the primary

member, and then try to read it from one (or more) of the secondary members.

Connect to the primary with the mongo shell

On the primary replicat set member (as determined by the output from rs.staus()

in the previous section), start the mongo shell again by running the command

casdev-srv01# mongo -u mongoadmin -p --authenticationDatabase admin

MongoDB shell version v3.6.0

Enter password:

connecting to: mongodb://127.0.0.1:27017

MongoDB server version: 3.6.0

rs0:PRIMARY>

and entering the correct password (“ changeit ”). The mongo shell prompt now

displays the replica set name and member status.

Create some test data

Enter the commands below to create a new database called testDatabase

(databases are created automatically the first time they are used) and store some

documents in a collection called testCollection :

rs0:PRIMARY> use testDatabase

switched to db testDatabase

rs0:PRIMARY> for (var i=1; i <= 10; i++) db.testCollection.insert({

val: i })

WriteResult({ "nInserted" : 1 })

rs0:PRIMARY>

Then retrieve the documents just created by running the command

Test the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 348

rs0:PRIMARY> db.testCollection.find()

{ "_id" : ObjectId("5a298797050075eeef5df805"), "val" : 1 }

{ "_id" : ObjectId("5a298797050075eeef5df806"), "val" : 2 }

{ "_id" : ObjectId("5a298797050075eeef5df807"), "val" : 3 }

{ "_id" : ObjectId("5a298797050075eeef5df808"), "val" : 4 }

{ "_id" : ObjectId("5a298797050075eeef5df809"), "val" : 5 }

{ "_id" : ObjectId("5a298797050075eeef5df80a"), "val" : 6 }

{ "_id" : ObjectId("5a298797050075eeef5df80b"), "val" : 7 }

{ "_id" : ObjectId("5a298797050075eeef5df80c"), "val" : 8 }

{ "_id" : ObjectId("5a298797050075eeef5df80d"), "val" : 9 }

{ "_id" : ObjectId("5a298797050075eeef5df80e"), "val" : 10 }

rs0:PRIMARY>

Connect to a secondary with the mongo shell

Now connect with the mongo shell on one of the secondary members (e.g.,

casdev-srv02) by running the command

casdev-srv02# mongo -u mongoadmin -p --authenticationDatabase admin

MongoDB shell version v3.6.0

Enter password:

connecting to: mongodb://127.0.0.1:27017

MongoDB server version: 3.6.0

rs0:SECONDARY>

and entering the correct password (“ changeit ”).

Enable secondary member read operations

By default, reads from secondary members are not allowed; this is to ensure that a

query does not retrieve stale data. Even simple commands like show dbs and

show collections will fail with an error. But in this case we want to read from the

secondary, to make sure the data got copied from the primary. To enable this, run

the command

rs0:SECONDARY> db.getMongo().setSlaveOk()

which will enable reading from the secondary for duration of this connection.

Test the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 349

Check that everything was replicated

Run the commands

rs0:SECONDARY> show dbs

admin 0.000GB

config 0.000GB

local 0.000GB

testDatabase 0.000GB

rs0:SECONDARY> use testDatabase

switched to db testDatabase

rs0:SECONDARY> show collections

testCollection

rs0:SECONDARY>

to verify that testDatabase and testCollection are indeed available on the

secondary. Then run the command

rs0:SECONDARY> db.testCollection.find()

{ "_id" : ObjectId("5a298797050075eeef5df805"), "val" : 1 }

{ "_id" : ObjectId("5a298797050075eeef5df807"), "val" : 3 }

{ "_id" : ObjectId("5a298797050075eeef5df808"), "val" : 4 }

{ "_id" : ObjectId("5a298797050075eeef5df806"), "val" : 2 }

{ "_id" : ObjectId("5a298797050075eeef5df80a"), "val" : 6 }

{ "_id" : ObjectId("5a298797050075eeef5df80c"), "val" : 8 }

{ "_id" : ObjectId("5a298797050075eeef5df80d"), "val" : 9 }

{ "_id" : ObjectId("5a298797050075eeef5df80b"), "val" : 7 }

{ "_id" : ObjectId("5a298797050075eeef5df80e"), "val" : 10 }

{ "_id" : ObjectId("5a298797050075eeef5df809"), "val" : 5 }

rs0:SECONDARY>

to check that, indeed, the data inserted on the primary is also present on the

secondary. The data may not appear in numerical order, since the command did

not attempt to sort them, but they should all be present.

Delete the test database

Exit the mongo shell on the secondaries, and then run the commands

Test the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 350

rs0:PRIMARY> show dbs

admin 0.000GB

config 0.000GB

local 0.000GB

testDatabase 0.000GB

rs0:SECONDARY> use testDatabase

switched to db testDatabase

rs0:SECONDARY> db.dropDatabase()

{

"dropped" : "testDatabase",

"ok" : 1,

"operationTime" : Timestamp(1512671689, 2),

"$clusterTime" : {

"clusterTime" : Timestamp(1512671689, 2),

"signature" : {

"hash" : BinData(0,"CpHBrLKG56+ehaMf8Uk5QlzeS

X8="),

"keyId" : NumberLong("6496845223040122881")

}

}

}

rs0:PRIMARY>

on the primary to remove the test database and its contents.

References

• Linode: Create a MongoDB Replica Set

Test the replica set PDF last generated: October 18, 2018

Deploying Apereo CAS Page 351

https://www.linode.com/docs/databases/mongodb/create-a-mongodb-replica-set

Configure MongoDB to use TLS/SSL
Communications between the CAS server and calling applications (clients) are

protected by TLS/SSL to prevent the disclosure of users’ security credentials and/

or CAS ticket-granting tickets. Since MongoDB will be used to store ticket-granting

tickets (and other sensitive information), communications between the CAS server

and MongoDB should likewise be protected by TLS/SSL.

Generate private keys and certificate signing requests

Each of the replica set members (casdev-srv01, casdev-srv02, and casdev-

srv03) will need its own TLS/SSL certificate. Run the commands

Configure MongoDB to use TLS/SSL PDF last generated: October 18, 2018

Deploying Apereo CAS Page 352

casdev-srv01# cd /etc/pki/tls/private

casdev-srv01# openssl req -nodes -newkey rsa:2048 -sha256 -keyout cas

dev-srv01.key -out casdev-srv01.csr

Generating a 2048 bit RSA private key

...

...........

....................+++

...

...........

...............+++

writing new private key to 'casdev-srv01.key'

You are about to be asked to enter information that will be incorpora

ted

into your certificate request.

What you are about to enter is what is called a Distinguished Name o

r a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US

State or Province Name (full name) []:New York

Locality Name (eg, city) [Default City]:New York

Organization Name (eg, company) [Default Company Ltd]:The New School

Organizational Unit Name (eg, section) []:IT

Common Name (eg, your name or your server's hostname) []:casdev-srv0

1.newschool.edu

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

casdev-srv01#

on casdev-srv01 to generate a private key and certificate signing request.

(Replace the contents of the Distinguished Name fields with values appropriate for

your organization.) Repeat the commands on casdev-srv02 and casdev-srv03 to

generate private keys and certificate signing requests on those servers as well,

making the obvious host name substitutions on each server.

Submit all three certificate signing requests (casdev-srvNN.csr) to your certificate

authority to obtain certificates. When the certificates come back from the certificate

authority, copy the certificate for each server and any intermediate certificate(s) into

/etc/pki/tls/certs on the applicable server, saving them as casdev-srvNN.crt ,

Configure MongoDB to use TLS/SSL PDF last generated: October 18, 2018

Deploying Apereo CAS Page 353

casdev-srvNN-intermediate.crt , casdev-srvNN-root.crt , etc. (you may need to

separately download the root certificate from the certificate authority’s web site). If

your certificate authority offers multiple certificate formats, opt for the PEM format,

which looks like:

-----BEGIN CERTIFICATE-----

AQEFAAOCAQ8AMIIBCgKCAQEAtGCKiysqhQF4/AA5Pvi7EIIRqbtVx/IF0CAFK8lv

6uDJDHjd7bSNhhzYJxUNCdN0DacYT5wI/s4n3mLEXQrIt0KsUdPD+s7qP9Lw05hI

WaG7KhP6RZ+UtWSvHwIZJUHvlJvh2GlARw/XwV3iHG3mxfl5nCLNihAR9S1r2qEY

...several more lines of base64-encoded data...

-----END CERTIFICATE----

Combine the certificate and private key into a single .pem

file

The MongoDB server requires the certificate and the private key to be stored in a

single file. Run the commands

casdev-srv01# cd /etc/pki/tls

casdev-srv01# cat private/casdev-srv01.key certs/casdev-srv01.crt >

/var/lib/mongo/mongod-cert.pem

casdev-srv01# chown mongod.mongod /var/lib/mongo/mongod-cert.pem

casdev-srv01# chmod 400 /var/lib/mongo/mongod-cert.pem

on casdev-srv01 to create the combined file in /var/lib/mongo/mongod-cert.pem .

Repeat these commands on casdev-srv02 and casdev-srv03.

Combine the root and intermediate certificates into a

single .pem file

The MongoDB server also requires that the certificate chain (the intermediate

certificate(s) and the root certificate) from the certificate authority be provided in a

single file. Run the commands

Configure MongoDB to use TLS/SSL PDF last generated: October 18, 2018

Deploying Apereo CAS Page 354

casdev-srv01# cd /etc/pki/tls

casdev-srv01# cat certs/casdev-srv01-intermediate.crt casdev-srv01-ro

ot.crt > /var/lib/mongo/mongod-cafile.pem

casdev-srv01# chown mongod.mongod /var/lib/mongo/mongod-cafile.pem

casdev-srv01# chmod 400 /var/lib/mongo/mongod-cafile.pem

on casdev-srv01 to create the combined file in /var/lib/mongo/mongod-

cafile.pem . Repeat these commands on casdev-srv02 and casdev-srv03.

Update the MongoDB configuration file

Edit the /etc/mongod.conf file on casdev-master and add an ssl subsection to

the net section, as shown below:

net:

port: 27017

bindIp: 0.0.0.0

ssl:

mode: requireSSL

allowConnectionsWithoutCertificates: true

PEMKeyFile: /var/lib/mongo/mongod-cert.pem

CAFile: /var/lib/mongo/mongod-cafile.pem

Then run the commands

casdev-master# for i in 01 02 03

> do

> scp -p /etc/mongod.conf casdev-srv${i}:/etc/mongod.conf

> ssh casdev-srv${i} "systemctl start mongod-disable-thp; systemctl r

estart mongod"

> done

mongod.conf 100% 813 41.2KB/

s 00:00

mongod.conf 100% 813 53.4KB/

s 00:00

mongod.conf 100% 813 721.3KB/

s 00:00

casdev-master#

to copy the updated configuration file to each member of the replica set and

(re)start the mongod server.

Configure MongoDB to use TLS/SSL PDF last generated: October 18, 2018

Deploying Apereo CAS Page 355

Test the TLS/SSL configuration

To test the TLS/SSL configuration, use the mongo shell with the --ssl option to

verify that you can connect to the server and execute a command. Run the

commands

casdev-master# mongo -u mongoadmin -p --authenticationDatabase admin

--ssl --host rs0/casdev-srv01.newschool.edu,casdev-srv02.newschool.ed

u,casdev-srv03.newschool.edu

MongoDB shell version v3.6.0

Enter password:

connecting to: mongodb://casdev-srv01.newschool.edu:27017,casdev-srv0

2.newschool.edu:27017,casdev-srv03.newschool.edu:27017/?replicaSet=rs

0

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Starting new replic

a set monitor for rs0/casdev-srv01.newschool.edu:27017,casdev-srv02.n

ewschool.edu:27017,casdev-srv03.newschool.edu:27017

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Successfully connec

ted to casdev-srv02.newschool.edu:27017 (1 connections now open to ca

sdev-srv02.newschool.edu:27017 with a 5 second timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [ReplicaSetMonitor-TaskExecut

or-0] Successfully connected to casdev-srv01.newschool.edu:27017 (1 c

onnections now open to casdev-srv01.newschool.edu:27017 with a 5 seco

nd timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Successfully connec

ted to casdev-srv03.newschool.edu:27017 (1 connections now open to ca

sdev-srv03.newschool.edu:27017 with a 5 second timeout)

MongoDB server version: 3.6.0

rs0:PRIMARY> show dbs

admin 0.000GB

casdb 0.000GB

config 0.000GB

local 0.014GB

rs0:PRIMARY> exit

bye

casdev-master#

Note that, now that a replica set has been established, the --host option must be

provided, listing the replica set name and the names of all the replica set members,

rather than just letting mongo connect to the local host. This will ensure that the

shell connects to the primary replica set member, regardless of which member that

happens to be at the moment.

Configure MongoDB to use TLS/SSL PDF last generated: October 18, 2018

Deploying Apereo CAS Page 356

References

• MongoDB: Configure mongod and mongos for TLS/SSL

Configure MongoDB to use TLS/SSL PDF last generated: October 18, 2018

Deploying Apereo CAS Page 357

https://docs.mongodb.com/manual/tutorial/configure-ssl/

Create the CAS database and user
We will create a CAS-specific database where the CAS server can store all its

data. Each of the different modules (ticket registry, service registry, etc.) will store

its information in a separate collection within this database. We will also create a

“regular” user (one that does not have administrative rights) to be used by the CAS

servers to access these tables.

Create the CAS database

MongoDB does not have a special command to create a database. Rather, the

database is created the first time it is used. To create the database, connect to the

primary replica set member with the mongo shell and issue a use <databasename>

command:

casdev-master# mongo -u mongoadmin -p --authenticationDatabase admin

--ssl --host rs0/casdev-srv01.newschool.edu,casdev-srv02.newschool.ed

u,casdev-srv03.newschool.edu

MongoDB shell version v3.6.0

Enter password:

connecting to: mongodb://casdev-srv01.newschool.edu:27017,casdev-srv0

2.newschool.edu:27017,casdev-srv03.newschool.edu:27017/?replicaSet=rs

0

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Starting new replic

a set monitor for rs0/casdev-srv01.newschool.edu:27017,casdev-srv02.n

ewschool.edu:27017,casdev-srv03.newschool.edu:27017

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Successfully connec

ted to casdev-srv02.newschool.edu:27017 (1 connections now open to ca

sdev-srv02.newschool.edu:27017 with a 5 second timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [ReplicaSetMonitor-TaskExecut

or-0] Successfully connected to casdev-srv01.newschool.edu:27017 (1 c

onnections now open to casdev-srv01.newschool.edu:27017 with a 5 seco

nd timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Successfully connec

ted to casdev-srv03.newschool.edu:27017 (1 connections now open to ca

sdev-srv03.newschool.edu:27017 with a 5 second timeout)

MongoDB server version: 3.6.0

rs0:PRIMARY> use casdb

switched to db casdb

rs0:PRIMARY>

This will create a database called casdb .

Create the CAS database and user PDF last generated: October 18, 2018

Deploying Apereo CAS Page 358

Create a database user

Database users can be created in the admin database, or in the database they will

be accessing. If the user is in a different database than the one being connected to

however, then the connection command must specify the database to authenticate

against. To simplify things, the CAS database user will be created in the casdb

database created above. In the mongo shell, switch to the casdb database and

create a new user by running the commands

rs0:PRIMARY> use casdb

switched to db casdb

rs0:PRIMARY> db.createUser({ user: "mongocas", pwd: "changeit", role

s: [{ role: "readWrite", db: "casdb" }] })

Successfully added user: {

"user" : "mongocas",

"roles" : [

{

"role" : "readWrite",

"db" : "casdb"

}

]

}

rs0:PRIMARY>

This will create a user named mongocas with password changeit . The user will

have read/write access to the casdb database, and no access to any other

database (this can be changed later, by adjusting the user’s roles).

 Warning: The command above uses changeit as the value of the mongocas

password. Obviously, something other than this should be used in a

production MongoDB deployment.

Test the new database and user

Test the new database and user by exiting the administrative mongo shell and

running the command

Create the CAS database and user PDF last generated: October 18, 2018

Deploying Apereo CAS Page 359

rs0:PRIMARY> exit

bye

casdev-master# mongo casdb -u mongocas -p --ssl --host rs0/casdev-srv

01.newschool.edu,casdev-srv02.newschool.edu,casdev-srv03.newschool.ed

u

MongoDB shell version v3.6.0

Enter password:

connecting to: mongodb://casdev-srv01.newschool.edu:27017,casdev-srv0

2.newschool.edu:27017,casdev-srv03.newschool.edu:27017/casdb?replicaS

et=rs0

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Starting new replic

a set monitor for rs0/casdev-srv01.newschool.edu:27017,casdev-srv02.n

ewschool.edu:27017,casdev-srv03.newschool.edu:27017

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Successfully connec

ted to casdev-srv02.newschool.edu:27017 (1 connections now open to ca

sdev-srv02.newschool.edu:27017 with a 5 second timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [ReplicaSetMonitor-TaskExecut

or-0] Successfully connected to casdev-srv01.newschool.edu:27017 (1 c

onnections now open to casdev-srv01.newschool.edu:27017 with a 5 seco

nd timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Successfully connec

ted to casdev-srv03.newschool.edu:27017 (1 connections now open to ca

sdev-srv03.newschool.edu:27017 with a 5 second timeout)

MongoDB server version: 3.6.0

rs0:PRIMARY> exit

bye

casdev-master#

to connect to the casdb database as the mongocas user.

References

• MongoDB: Add Users

Create the CAS database and user PDF last generated: October 18, 2018

Deploying Apereo CAS Page 360

https://docs.mongodb.com/manual/tutorial/create-users/

Setting up the ticket registry

Summary: A distributed ticket registry, accessible to all CAS servers

in the environment, will be used to ensure that tickets can be located

(and validated) by any server in the environment, not just the server

that created it.

To support high availability/fault tolerance, the CAS server environment has been

built with a pool of servers behind a load balancer. However, as configured up to

this point, each server in the pool behaves as an independent entity. This is

immediately obvious when trying to access the “secure” content on either casdev-

casapp or casdev-samlsp when more than one of the servers in the pool is up

and running:

1. When a user attempts to access a CAS-protected application (or CAS-

protected content within the application), the application checks to see if

the user has provided a CAS Service Ticket (ST) as authorization. If an ST

has not been provided (as happens when the application is first

accessed), the application sends the user (usually with a web browser

redirect) to the CAS server to obtain one.

2. When the user accesses the CAS server, the load balancer (which holds

the IP address registered to the CAS server’s public DNS host record) will

connect the user to one of the serves in the pool using whatever load

balancing strategy has been configured (e.g., round-robin).

3. The CAS server will query the user’s client (usually by looking for a web

browser cookie) to see if the user has a CAS Ticket Granting Ticket (TGT):

a. If the user does not have a TGT, then CAS will prompt the user to

enter his or her credentials (username, password, multi-factor

authentication, etc.) and, upon successful authentication, create a

TGT for the user.

b. If the user already has a TGT, then CAS will attempt to validate it

(make sure it can be decrypted, hasn’t expired, etc.) and, if

validation is successful, allow the user to proceed without having

to enter his or her credentials again. Problem: By default, the

CAS server stores the information it needs to validate TGTs (the

ticket registry) in memory. Thus, if one server in the pool created

a TGT, another server in the pool will be unable to validate it,

because it doesn’t have access to that information.

4. Once the TGT has been created/validated, the CAS server uses it to

create an ST for the application, and sends the user (again, usually with a

Setting up the ticket registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 361

web browser redirect) back to the application.

5. The application takes the ST provided by the user and sends it via a back

channel (user-transparent) communication to the CAS server to be

validated. The CAS server will use the TGT and other information to

validate the ST, and return the results to the application. This is also the

point at which any user attributes (e.g., from Active Directory or LDAP) are

returned to the application. Problem: The CAS server needs information

from the ticket registry to validate STs. Since, as mentioned above, this

information is stored in memory by default, CAS servers cannot validate

STs created by other servers in the pool because they do not have access

to the necessary information.

6. Once the ST has been validated, the application allows the user to access

the protected content.

The problems identified in steps 3(b) and 5 above are why, when testing the CAS

client and SAML client in previous sections, we always shut down all but one of the

CAS servers in the pool. (For more details on the steps above, including flow

diagrams, see CAS Protocol .)

To solve the problem of each server in the pool not having the information needed

to validate TGTs and STs created by other servers, we will replace the default in-

memory ticket registry with one stored in MongoDB. Each CAS server in the pool

will save its tickets to the database, and any other server in the pool will be able to

access the tickets created by other servers when necessary.

Setting up the ticket registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 362

https://apereo.github.io/cas/5.2.x/protocol/CAS-Protocol.html

Update the server configuration
Enabling the MongoDB ticket registry requires adding a new dependency to the

Maven project object model, rebuilding the server, and updating cas.properties .

Add the dependency to the project model

To add the MongoDB ticket registry to the CAS server, edit the file pom.xml in the

cas-overlay-template directory on the master build server (casdev-master) and

locate the dependencies section (around line 69), which should look something like

this:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 363

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml-idp</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-duo</artifactId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Insert the new dependency at the bottom of the section:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 364

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml-idp</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-duo</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-mongo-ticket-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

</dependencies>

This will instruct Maven to download the appropriate code modules and build them

into the server.

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 365

Rebuild the server

Run Maven to rebuild the server according to the new model:

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 17.257 s

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 39M/97M

[INFO]

casdev-master#

Configure MongoDB ticket registry properties

Add the following settings to etc/cas/config/cas.properties in the cas-

overlay-template directory:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 366

#

Components of the MongoDB connection string broken out for ease of

editing.

See https://docs.mongodb.com/reference/connection-string/

#

mongo.db: casdb

mongo.rs: rs0

mongo.opts: &ssl=false

mongo.creds: mongocas:changeit

mongo.hosts: casdev-srv01.newschool.edu,cas

dev-srv02.newschool.edu,casdev-srv03.newschool.edu

#

The connection string, assembled

#

mongo.uri: mongodb://${mongo.creds}@${mon

go.hosts}/${mongo.db}?replicaSet=${mongo.rs}${mongo.opts}

#

Ticket registry

#

cas.ticket.registry.mongo.clientUri: ${mongo.uri}

The cas.ticket.registry.mongo.clientUri property is the only setting specific to

the ticket registry that needs to be set; it takes a MongoDB connection string as a

value. The format of a MongoDB connection string is:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,host

N[:portN]]][/[database][?options]]

The mongo.* properties are optional; they make it easier to edit the components of

the connection string, and will also make it easier to repeat the connection string in

other settings (such as for the [MongoDB service registry][high-avail_service-

registry_overview]) without having to duplicate values that may change over time.

Enable MongoDB Java driver logging

The Log4J configuration file included with the Maven WAR overlay template does

not include a logger for the MongoDB Java driver, which is what the CAS server

uses to communicate with MongoDB. To enable MongoDB Java driver logging, edit

the file etc/cas/config/log4j2.xml on the master build server (casdev-master)

and locate the bottom of the list of AsyncLogger definitions (around line 97), which

should look something like this:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 367

<AsyncLogger name="org.ldaptive" level="warn" />

<AsyncLogger name="com.hazelcast" level="warn" />

<AsyncLogger name="org.jasig.spring" level="warn" />

<!-- Log perf stats only to perfStats.log -->

Add a new definition for org.mongodb.driver to the list:

<AsyncLogger name="org.ldaptive" level="warn" />

<AsyncLogger name="com.hazelcast" level="warn" />

<AsyncLogger name="org.jasig.spring" level="warn" />

<AsyncLogger name="org.mongodb.driver" level="warn" />

<!-- Log perf stats only to perfStats.log -->

Although this line is not critical to the regular operation of the CAS server (warnings

and errors will just propagate upward), it is immensely helpful when trying to debug

MongoDB connection problems (set level to debug).

References

• CAS 5: MongoDB Ticket Registry

• CAS 5: Configuration Properties: MongoDB Ticket Registry

• MongoDB: Connection String URI Format

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 368

https://apereo.github.io/cas/5.2.x/installation/MongoDb-Ticket-Registry.html
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#mongodb-ticket-registry
https://docs.mongodb.com/manual/reference/connection-string/

Install and test the application
The MongoDB ticket registry can be tested by installing the updated CAS software

on the CAS servers and restarting it, and then accessing the test clients from

multiple browsers.

Install and test on the master build server

Use the updated build and installation scripts (page 248) (or repeat the commands)

to install the updated CAS server on the master build server (casdev-master) and

restart Tomcat:

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors. Then connect to MongoDB with the mongo

shell and check to see that the ticket registry collections have been created. Use

the MongoDB connection string to ensure that you get connected to the primary:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 369

casdev-master# mongo 'mongodb://mongocas:changeit@casdev-srv01.newsch

ool.edu,casdev-srv02.newschool.edu,casdev-srv03.newschool.edu/casdb?r

eplicaSet=rs0&ssl=false'

MongoDB shell version v3.6.0

connecting to: mongodb://mongocas:changeit@casdev-srv01.newschool.ed

u,casdev-srv02.newschool.edu,casdev-srv03.newschool.edu/casdb?replica

Set=rs0&ssl=false

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Starting new replic

a set monitor for rs0/casdev-srv01.newschool.edu:27017,casdev-srv02.n

ewschool.edu:27017,casdev-srv03.newschool.edu:27017

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [ReplicaSetMonitor-TaskExecut

or-0] Successfully connected to casdev-srv01.newschool.edu:27017 (1 c

onnections now open to casdev-srv01.newschool.edu:27017 with a 5 seco

nd timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Successfully connec

ted to casdev-srv02.newschool.edu:27017 (1 connections now open to ca

sdev-srv02.newschool.edu:27017 with a 5 second timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [ReplicaSetMonitor-TaskExecut

or-0] Successfully connected to casdev-srv03.newschool.edu:27017 (1 c

onnections now open to casdev-srv03.newschool.edu:27017 with a 5 seco

nd timeout)

MongoDB server version: 3.6.0

rs0:PRIMARY> show collections

proxyGrantingTicketsCollection

proxyTicketsCollection

samlArtifactsCache

samlAttributeQueryCache

serviceTicketsCollection

ticketGrantingTicketsCollection

rs0:PRIMARY>

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the updated build and installation scripts (page 248):

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 370

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Test the operation of the registry

To test the operation of the registry, start a terminal session on each of the CAS

servers (casdev-srv01, casdev-srv02, and casdev-srv03) and run the command

tail -f /var/log/cas/cas.log

Then:

1. Start a web browser and access the CAS client application (casdev-

casapp). Click the link to access the secured content and log into CAS.

Watch the terminal windows to see which CAS server processes the

request. Note that it is quite likely (although not certain) that one server will

handle the authnetication from your browser, and another server will

handle the ticket validation from the client application.

2. Using the same web browser, access the SAML client application

(casdev-samlsp). Again, click the link to access the secured content and

watch the terminal windows to see which CAS server processes the

request. There should be no need to re-enter your username and

password, since the server should find your ticket granting ticket in the

database.

3. Start a different web browser (or use a different computer) and repeat

steps 1 and 2.

4. Start a different (from either of the first two) web browser, but this time

access the status dashboard (https://casdev.newschool.edu/cas/

status/dashboard). On the dashboard, click on the SSO Sessions button

to see a list of all the current sessions (there should be one line per user

that you have authenticated with, and the “Usage Count” column should

show the number of services each user has authenticated to).

5. In the mongo shell, run the command

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 371

rs0:PRIMARY> db.ticketGrantingTicketsCollection.distinct("ticketId")

[

"TGT-1--H-sl9Yzq9a5gJYi1bsoV6ai_kukv7iD4_njJzuANUwZo6qosuX2

r_3U-oxD5K0LBBg-casdev-srv01",

"TGT-1-Blp3zphQTS-CS4JWf4Tb4u7c1Pl5i5TpK11f8-Eu5Sh-gAgjVi_KbR

U1pqgQDYLLRL0-casdev-srv03",

"TGT-1-KFfoL9mnLFMXx5il2Qyj-vMEN_3i5-i1dHBFoGuacr0COgybq-m5V

K-E8k-ljXwoQMk-casdev-srv02"

]

rs0:PRIMARY>

to see that all of the tickets have been created in the database. Note that the end

of each ticket identifier contains the host name of the particular CAS server that

created it.

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 372

Commit changes to Git
Before moving on to the next task, commit the changes made to pom.xml ,

cas.properties , and log4j2.xml to Git to make changes easier to keep track of

(and to enable reverting to earlier configurations easier). Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git add etc/cas/config/log4j2.xml

casdev-master# git add pom.xml

casdev-master# git commit -m "Added MongoDB ticket registry"

[newschool-casdev 57302ae] Added MongoDB ticket registry

3 files changed, 33 insertions(+), 4 deletions(-)

casdev-master#

on the master build server (casdev-master).

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 373

Setting up the service registry

Summary: A distributed service registry, accessible to all CAS

servers, will be used to ensure that every server has the most up-to-

date information about authorized services, and to allow the registry to

be maintained from a single administration point.

The JSON service registry (page 107) works well in a single server environment.

But in an environment with a pool of servers, it doesn’t. Most significantly, the

service management webapp (page 236) won’t work correctly, because any

modifications it makes to the service registry will only take effect on the particular

pool server where the webapp session is running. The other servers’ registries will

be out of date until some out-of-band process (manual or automated) can update

them with the new information. That update process however is complicated by the

fact that the service management webapp runs on every CAS server (for high

availability/fault tolerance), so different changes can be made on different servers,

requiring the synchronization process to be capable of performing N-way merges

and resolving any resultant conflicts.

To solve this problem, we will replace the JSON service registry with one stored in

MongoDB. Each CAS server in the pool will load (and reload) its list of authorized

services from the database and every instance of the service management webapp

will write to the database, thus ensuring that all servers in the pool always have up-

to-date, identical information about authorized services.

Setting up the service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 374

Update the server configuration
Enabling the MongoDB service registry requires updating a dependency in the

project object model, rebuilding the server, and updating configuration properties.

The same steps must be performed on the management webapp, which also works

with the service registry.

Update the dependency in the project model

As with all other features of the CAS server (and the management webapp), the

MongoDB service registry is enabled by adding a new dependency to the project

object model (pom.xml). But this time we are actually replacing one feature (the

JSON service registry) with another, so rather than adding a new dependency to

the list, we will update one in place.

CAS server

Edit the file pom.xml in the cas-overlay-template directory on the master build

server (casdev-master) and locate the cas-server-support-json-service-

registry dependency (around line 79) that was added when the service registry

was first enabled (page 108)], which should look like this:

<dependencies>

....

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-json-service-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

....

</dependencies>

Replace the json in the dependency name with mongo , so that it now looks like

this:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 375

<dependencies>

....

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-mongo-service-registry</artifa

ctId>

<version>${cas.version}</version>

</dependency>

....

</dependencies>

This will instruct Maven to download the appropriate code modules and build them

into the server.

Service management webapp

Edit the file pom.xml in the cas-management-overlay directory on the master build

server (casdev-master) and locate the cas-server-support-json-service-

registry dependency (around line 78) that was added when the management

webapp was first built (page 240), and repeat the change described above (replace

json with mongo in the name of the dependency).

Rebuild the application

Run Maven to rebuild the applications according to the new models.

CAS server

From the cas-overlay-template directory:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 376

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 25.411 s

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 37M/96M

[INFO]

casdev-master#

Manaagement webapp

From the cas-management-overlay directory:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 377

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 8.229 s

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 30M/72M

[INFO]

casdev-master#

Configure MongoDB service registry properties

Both the CAS server and the management webapp need to be configured to

recognize and use the MongoDB service registry.

CAS server

Add the following settings to etc/cas/config/cas.properties in the cas-

overlay-template directory:

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 378

#

Components of the MongoDB connection string broken out for ease of

editing.

See https://docs.mongodb.com/manual/reference/connection-string/

#

mongo.db: casdb

mongo.rs: rs0

mongo.opts: &ssl=false

mongo.creds: mongocas:changeit

mongo.hosts: casdev-srv01-lid.newschool.ed

u,casdev-srv02-lid.newschool.edu,casdev-srv03-lid.newschool.edu

#

The connection string, assembled

#

mongo.uri: mongodb://${mongo.creds}@${mo

ngo.hosts}/${mongo.db}?replicaSet=${mongo.rs}${mongo.opts}

#

Service registry

#

cas.serviceRegistry.mongo.clientUri: ${mongo.uri}

cas.serviceRegistry.mongo.collection: casServiceRegistry

The cas.serviceRegistry.mongo.clientUri property is the only setting specific to

the service registry that needs to be set; it takes a MongoDB connection string as a

value. The format of a MongoDB connection string is:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,host

N[:portN]]][/[database][?options]]

The mongo.* properties are optional; they make it easier to edit the components of

the connection string, and also make it easier to repeat the connection string in

other settings (such as for the MongoDB ticket registry (page 361)) without having

to duplicate values that may change over time.

The cas.serviceRegistry.mongo.collection property setting is not required, but

is recommended. By default, CAS calls the collection cas-service-registry . This

is a valid MongoDB collection name, but the mongo shell does not accept

collection names that contain hyphens in some commands. Although it’s possible

to work around that using alternative command syntax, it’s easier to just avoid the

problem altogether by using a collection name that doesn’t contain hyphens.

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 379

Do not delete the cas.serviceRegistry.json.location property from

cas.properties just yet; it’s still needed to transfer the contents of the JSON

service registry to the MongoDB service registry.

Management webapp

Copy the settings that were added to the CAS server above to etc/cas/config/

management.properties in the cas-management-overlay directory.

Delete the cas.serviceRegistry.json.location property from

management.properties ; it is not needed now that we are using the MongoDB

service registry.

References

• CAS 5: Mongo Service Registry

• CAS 5: Configuration Properties: MongoDb Service Registry

Update the server configuration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 380

https://apereo.github.io/cas/5.2.x/installation/Mongo-Service-Management.html
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#mongodb-service-registry

Load the MongoDB service registry from
the JSON service registry
If no other service registry is configured, CAS will use an in-memory service

registry (not suitable for production deployments) and, to make it possible to

experiment with the server, automatically initialize that registry from some default

JSON service definitions included with the software (these are stored in the

application classpath). But the auto-initialization functionality is actually more

flexible than this: it can initialize any configured service registry, not just the in-

memory service registry, and it can be told where to look for the set of JSON

service definitions that it will populate into that registry. We will make use of these

features to transfer the contents of the existing JSON service registry to the new

MongoDB service registry.

Configure service registry auto-initialization

Edit the file etc/cas/config/cas.properties in the cas-overlay-template

directory on the master build server (casdev-master) and locate the

cas.serviceRegistry.json.location property (around line 7) that was added

when we set up the original service registry (page 110):

cas.serviceRegistry.json.location: file:/etc/cas/services

(If you deleted this setting when adding the MongoDB settings in the previous

section, add it back, because it’s needed for this step.) Add the

cas.serviceRegistry.initFromJson property to enable the automatice service

registry initialization functionality:

cas.serviceRegistry.json.location: file:/etc/cas/services

cas.serviceRegistry.initFromJson: true

Install and run on the master build server

Use the updated build and installation scripts (page 248) (or repeat the commands)

to install the updated CAS server and management webapp on the master build

server (casdev-master) and restart Tomcat:

Load the MongoDB service registry from the JSON service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 381

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors. This warning may appear in cas.log :

Runtime memory is used as the persistence storage for retrieving and

persisting service definitions. Changes that

are made to service definitions during runtime WILL be LOST when the

web server is restarted. Ideally for

production, you need to choose a storage option (JDBC, etc) to store

and track service definitions.

and can be safely ignored (its appearance is a side effect caused by the fact that

we haven’t actually created anything in the MongoDB service registry yet).

Verify that the MongoDB service registry was created and

populated

Once the server has finished its startup, connect to MongoDB with the mongo shell

and check to see that the service registry collection (casServiceRegistry) has

been created, and that it has the appropriate contents. Use the MongoDB

connection string to ensure that you get connected to the primary:

Load the MongoDB service registry from the JSON service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 382

casdev-master# mongo 'mongodb://mongocas:changeit@casdev-srv01.newsch

ool.edu,casdev-srv02.newschool.edu,casdev-srv03.newschool.edu/casdb?r

eplicaSet=rs0&ssl=false'

MongoDB shell version v3.6.0

connecting to: mongodb://mongocas:changeit@casdev-srv01.newschool.ed

u,casdev-srv02.newschool.edu,casdev-srv03.newschool.edu/casdb?replica

Set=rs0&ssl=false

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Starting new replic

a set monitor for rs0/casdev-srv01.newschool.edu:27017,casdev-srv02.n

ewschool.edu:27017,casdev-srv03.newschool.edu:27017

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [ReplicaSetMonitor-TaskExecut

or-0] Successfully connected to casdev-srv01.newschool.edu:27017 (1 c

onnections now open to casdev-srv01.newschool.edu:27017 with a 5 seco

nd timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [thread1] Successfully connec

ted to casdev-srv02.newschool.edu:27017 (1 connections now open to ca

sdev-srv02.newschool.edu:27017 with a 5 second timeout)

YYYY-MM-DDTHH:MM:SS.sss-0000 I NETWORK [ReplicaSetMonitor-TaskExecut

or-0] Successfully connected to casdev-srv03.newschool.edu:27017 (1 c

onnections now open to casdev-srv03.newschool.edu:27017 with a 5 seco

nd timeout)

MongoDB server version: 3.6.0

rs0:PRIMARY> show collections

casServiceRegistry

proxyGrantingTicketsCollection

proxyTicketsCollection

samlArtifactsCache

samlAttributeQueryCache

serviceTicketsCollection

ticketGrantingTicketsCollection

rs0:PRIMARY> db.casServiceRegistry.distinct("serviceId")

[

"https://casdev.newschool.edu/cas/idp/profile/SAML2/Callbac

k.+",

"^https://casdev-casapp.newschool.edu/secured-by-ca

s(\\z|/.*)",

"https://casdev-samlsp.newschool.edu/shibboleth",

"^https://casdev-casapp.newschool.edu/return-mappe

d(\\z|/.*)",

"^https://casdev-casapp.newschool.edu/secured-by-cas-du

o(\\z|/.*)",

"^https://casdev.newschool.edu/cas/status/dashboar

d(\\z|/.*)",

"^https://casdev.newschool.edu/cas-management(\\z|/.*)"

]

rs0:PRIMARY>

Load the MongoDB service registry from the JSON service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 383

There should be one entry in the collection for each service defined in the JSON

service registry.

Shut down the application

Once the MongDB service registry has been initialized, shut down the CAS server

by running the command

casdev-master# systemctl stop tomcat

Remove service registry auto-initialization settings

Edit the file etc/cas/config/cas.properties in the cas-overlay-template

directory again and delete the cas.serviceRegistry.json.location and

cas.serviceRegistry.initFromJson settings.

Load the MongoDB service registry from the JSON service registry PDF last generated: October 18, 2018

Deploying Apereo CAS Page 384

Install and test the application
The MongoDB service registry can be tested by installing the updated CAS

software on the CAS servers and restarting it, and then accessing the test clients

and the management webapp.

Delete the JSON service registry

Before installing, delete the JSON service registry on the master build server and

the CAS servers by either renaming or removing the /etc/cas/services directory:

casdev-master# mv /etc/cas/services /etc/cas/services.off

casdev-master# for i in 01 02 03

> do

> ssh casdev-srv${i} rm -rf /etc/cas/services

> done

casdev-master#

Install and test on the master build server

Use the updated build and installation scripts (page 248) (or repeat the commands)

to install the updated CAS server on the master build server (casdev-master) and

restart Tomcat:

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the updated build and installation scripts (page 248):

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 385

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Test the operation of the registry

To test the operation of the registry, log into the management webapp and verify

that all expected services are present, and that a service can be added to the

registry (and removed from it). You can also use the CAS and SAML client

applications to ensure that you can access the protected areas of those

applications and that all expected attributes are still being released.

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 386

Commit changes to Git
Before moving on to the next task, commit the changes made to pom.xml and

cas.properties in the cas-overlay-template directory to Git to make changes

easier to keep track of (and to enable reverting to earlier configurations easier).

Run the commands

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# git add etc/cas/config/cas.properties

casdev-master# git add pom.xml

casdev-master# git commit -m "Added MongoDB service registry"

[newschool-casdev bfc6d29] Added MongoDB service registry

2 files changed, 7 insertions(+), 3 deletions(-)

casdev-master#

on the master build server (casdev-master). Then do the same with pom.xml and

management.properties in the cas-services-management-overlay directory:

casdev-master# cd /opt/workspace/cas-services-management-overlay

casdev-master# git add etc/cas/config/management.properties

casdev-master# git add pom.xml

casdev-master# git commit -m "Added MongoDB service registry"

[newschool-casdev-sm 7098c1f] Added MongoDB service registry

2 files changed, 29 insertions(+), 4 deletions(-)

casdev-master#

Commit changes to Git PDF last generated: October 18, 2018

Deploying Apereo CAS Page 387

Setting up distributed SAML metadata
storage

Summary: Neque porro quisquam est qui dolorem ipsum quia dolor

sit amet, consectetur, adipisci velit...

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla sodales turpis eu

sem fermentum eleifend. Aliquam sodales dignissim lectus id condimentum.

Phasellus sed dictum erat. Class aptent taciti sociosqu ad litora torquent per

conubia nostra, per inceptos himenaeos. Nullam at tortor ac tellus interdum

tincidunt et vitae est. Vivamus scelerisque sem diam. Nam orci mauris, fringilla ut

magna ac, scelerisque fringilla tellus. Aliquam viverra, est ut tincidunt rutrum, orci

nisl interdum lectus, ut gravida risus ipsum non tellus.

Setting up distributed SAML metadata storage PDF last generated: October 18, 2018

Deploying Apereo CAS Page 388

Setting up distributed configuration
properties

Summary: Neque porro quisquam est qui dolorem ipsum quia dolor

sit amet, consectetur, adipisci velit...

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla sodales turpis eu

sem fermentum eleifend. Aliquam sodales dignissim lectus id condimentum.

Phasellus sed dictum erat. Class aptent taciti sociosqu ad litora torquent per

conubia nostra, per inceptos himenaeos. Nullam at tortor ac tellus interdum

tincidunt et vitae est. Vivamus scelerisque sem diam. Nam orci mauris, fringilla ut

magna ac, scelerisque fringilla tellus. Aliquam viverra, est ut tincidunt rutrum, orci

nisl interdum lectus, ut gravida risus ipsum non tellus.

Setting up distributed configuration properties PDF last generated: October 18, 2018

Deploying Apereo CAS Page 389

Google Apps (G Suite) integration

Summary: Google Apps (G Suite) can be configured to use CAS as a

SAML2 IdP for single sign-on.

Google Apps (G Suite) allows an external SAML2 identity provider (IdP) to be used

for user authentication (single sign-on) as an alternative to storing user passwords

on Google’s servers. Support for Google’s specific SAML2 implementation was

originally added to CAS in the CAS 3.x days, before CAS included general support

for the SAML2 protocol. This code has been brought forward to CAS 5, and so

integrating Google Apps is still done separately (and differently) from integrating

other SAML2 services.

Add the Google Apps dependency to the project object

model

To add Google Apps support to the CAS server, edit the pom.xml in the cas-

overlay-template directory on the master build server (casdev-master) and

locate the dependencies section (around line 69), which should look something like

this:

Google Apps (G Suite) integration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 390

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-mongo-service-registry</artifa

ctId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml-idp</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-duo</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-mongo-ticket-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Insert a dependency for cas-server-support-saml-googleapps below the one for

cas-server-support-saml-idp :

Google Apps (G Suite) integration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 391

<dependencies>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-webapp${app.server}</artifactId>

<version>${cas.version}</version>

<type>war</type>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-mongo-service-registry</artifa

ctId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-ldap</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml-idp</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-saml-googleapps</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-duo</artifactId>

<version>${cas.version}</version>

</dependency>

<dependency>

<groupId>org.apereo.cas</groupId>

<artifactId>cas-server-support-mongo-ticket-registry</artifac

tId>

<version>${cas.version}</version>

</dependency>

</dependencies>

Google Apps (G Suite) integration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 392

This will instruct Maven to download the appropriate code modules and build them

into the server.

Rebuild the server

Run Maven to rebuild the server according to the new model:

casdev-master# ./mvnw clean package

[INFO] Scanning for projects...

[INFO]

[INFO]

[INFO] Building cas-overlay 1.0

[INFO]

(lots of diagnostic output... check for errors)

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 17.257 s

[INFO] Finished at: YYYY-MM-DDTHH:MM:SS-00:00

[INFO] Final Memory: 39M/97M

[INFO]

casdev-master#

References

• CAS 5: Google Apps Integration

Google Apps (G Suite) integration PDF last generated: October 18, 2018

Deploying Apereo CAS Page 393

https://apereo.github.io/cas/5.2.x/integration/Google-Apps-Integration.html

Generate keys and certificates
Google’s SAML2 implementation requires that the SAML assertions exchanged

with the CAS server be encrypted and signed. Therefore, it’s necessary to

generate a public/private key pair and an X.509 certificate for this purpose.

Use OpenSSL to generate the keys and certificate

Although it’s not the only method, OpenSSL is perhaps the easiest way to create

the keys and certificate. Run the commands

Generate keys and certificates PDF last generated: October 18, 2018

Deploying Apereo CAS Page 394

casdev-master# cd /opt/workspace/cas-overlay-template

casdev-master# mkdir etc/cas/google

casdev-master# cd etc/cas/google

casdev-master# openssl genrsa -out privatekey.pem 2048

Generating RSA private key, 2048 bit long modulus

...

+++

...

...................+++

e is 65537 (0x10001)

casdev-master# openssl rsa -in privatekey.pem -pubout -outform DER -o

ut publickey.der

writing RSA key

casdev-master# openssl pkcs8 -topk8 -inform PEM -outform DER -in priv

atekey.pem -out privatekey.der -nocrypt

casdev-master# openssl req -new -x509 -key privatekey.pem -out x509.p

em

You are about to be asked to enter information that will be incorpora

ted

into your certificate request.

What you are about to enter is what is called a Distinguished Name o

r a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US

State or Province Name (full name) []:New York

Locality Name (eg, city) [Default City]:New York

Organization Name (eg, company) [Default Company Ltd]:The New School

Organizational Unit Name (eg, section) []:IT

Common Name (eg, your name or your server's hostname) []:newschool.ed

u

Email Address []:

 Note: The CAS documentation provides slightly outdated instructions for

creating the keys. To ensure compatibility, follow the directions from Google’s

documentation (linked below). The instructions above are based on the

Google instructions.

When providing the Distinguished Name information for the X.509 certificate, use

the same information you use when creating an SSL certificate. For the Common

Name field, use the domain name of the Google Apps instance.

Generate keys and certificates PDF last generated: October 18, 2018

Deploying Apereo CAS Page 395

Although it’s possible to include the keys and certificate in the CAS WAR file (or

somewhere else on the classpath), we will keep them in the etc/cas/google

directory in the overlay, which will result in their getting copied to /etc/cas/google

when the server is deployed. This helps to ensure that they are not accidentally

deleted.

Configure Google Apps properties

Add the following settings to etc/cas/config/cas.properties in the cas-

overlay-template directory:

cas.googleApps.privateKeyLocation: file:/etc/cas/google/privatekey.d

er

cas.googleApps.publicKeyLocation: file:/etc/cas/google/publickey.de

r

cas.googleApps.keyAlgorithm: RSA

References

• CAS 5: Google Apps Integration

• CAS 5: Configuration Properties: Google Apps

• Google: Generate Keys and Certificates for SSO

Generate keys and certificates PDF last generated: October 18, 2018

Deploying Apereo CAS Page 396

https://apereo.github.io/cas/5.2.x/integration/Google-Apps-Integration.html
https://apereo.github.io/cas/5.2.x/installation/Configuration-Properties.html#google-apps-authentication
https://support.google.com/a/answer/6342198

Configure Google single sign-on
Once the CAS side of things has been set up, the Google side has to be

configured.

Configure SSO URLs

To configure a Google Apps domain to use the CAS server for user authentication:

1. Log in to the Google Admin Console for the domain to be configured.

2. Go to Security > Set up single sign-on (SSO).

3. Check the Setup SSO with third party identity provider box

4. Enter the CAS login URL (https://casdev.newschool.edu/cas/login) in

the Sign-in page URL blank. This should be the URL of the CAS login

endpoing, not the URL of the CAS SAML2 IdP endpoint.

5. Enter the CAS logout URL (https://casdev.newschool.edu/cas/logout)

in the Sign-out page URL blank.

6. Enter the URL a user should be directed to when changing his or her

password in the Change password URL blank. This may or may not be a

CAS endpoint, depending on whether the CAS password management

feature has been configured.

 Important: All URLs must be entered, and they must all use HTTPS.

Upload verification certificate

The X.509 file created earlier (page 394) has to be uploaded so that Google can

verify sign-in requests.

After configuring the URLs and uploading the certificate, click the SAVE button.

References

• Google: Service provider SSO set up

• Google: SAML key and verification certificate

Configure Google single sign-on PDF last generated: October 18, 2018

Deploying Apereo CAS Page 397

https://support.google.com/a/answer/6349809?hl=en&ref_topic=6348126
https://support.google.com/a/answer/6349922?hl=en&ref_topic=6348126

Install and test the application
Google Apps single sign-on can be tested by installing the updated CAS software

on the CAS servers and restarting it, and then signing into Google.

Install and test on the master build server

Use the updated build and installation scripts (page 248) (or repeat the commands)

to install the updated CAS server on the master build server (casdev-master) and

restart Tomcat:

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# sh /opt/scripts/cassrv-install.sh

---Installing on casdev-master.newschool.edu

Installation complete.

casdev-master#

Review the contents of the log files (/var/log/tomcat/catalina.yyyy-mm-dd.out

and /var/log/cas/cas.log) for errors.

Install on the CAS servers

Once everything is running correctly on the master build server, it can be copied to

the CAS servers using the updated build and installation scripts (page 248):

casdev-master# sh /opt/scripts/cassrv-tarball.sh

casdev-master# for host in srv01 srv02 srv03

> do

> scp -p /tmp/cassrv-files.tgz casdev-${host}:/tmp/cassrv-files.tgz

> scp -p /opt/scripts/cassrv-install.sh casdev-${host}:/tmp/cassrv-in

stall.sh

> ssh casdev-${host} sh /tmp/cassrv-install.sh

> done

casdev-master#

Register Google Apps in the service registry

Using the management webapp, add a new service registry entry for the Google

Apps instance. The service URL should be provided as:

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 398

^https://www.google.com/a/[Google Apps domain]/acs(\z|/.*)

For The New School then, this would be:

^https://www.google.com/a/newschool.edu/acs(\z|/.*)

 Important: Although it uses the SAML2 protocol, Google Apps should be

registered as a CAS client service, not a SAML2 Service Provider. That is, it

should be registered as a org.apereo.cas.services.RegexRegisteredService,

not as a org.apereo.cas.support.saml.services.SamlRegisteredService.

If the Google Apps instance does not use the same usernames as the CAS server,

the service registry entry can be configured to return the alternate username on the

Username Attribute tab of the management webapp.

Test the operation of Google Apps

To test the operation of Google Apps, visit https://mail.google.com/a/[Google

Apps domain] (for The New School, https://mail.google.com/a/newschool.edu).

References

• CAS 5: Google Apps Integration

Install and test the application PDF last generated: October 18, 2018

Deploying Apereo CAS Page 399

https://apereo.github.io/cas/5.2.x/integration/Google-Apps-Integration.html

Moving to production

Summary: Moving from development and testing to production

requires some additional steps to make sure everything goes

smoothly.

The New School CAS 5 environment entered production over the University’s 2018

Spring Break week.

The environment is essentially the one described in the introduction (page 9), with

a total of five virtual servers (two in one data center, three in the other) operating in

a pool behind a pair of F5 load balancers (one in each data center, in an active/

passive configuration). Each virtual server is running a Tomcat instance (running

both the CAS server and the CAS management webapp) and a MongoDB

instance. The MongoDB instances are all members of the same replica set (which

is why there are five servers; replica sets require an odd number of members) and

handle the distributed ticket registry and distributed service registry.

The servers manage access to approximately 50 applications, hosted both locally

in our data centers and remotely in the cloud by various Software-as-a-Service

providers. Half a dozen of these applications are SAML2-based and authenticate

through the CAS SAML2 IdP; the rest are CAS-based. Most of the applications

require only the user principal name (username) or a single user attribute, although

a few require more.

Event counts for Oct. 1 - Oct. 15, 2018

Event Average Events/Day

Authentication Event Triggered 67,183

Authentication Success 21,905

Authentication Failed 2,126

Service Ticket Created 32,612

Service Ticket Not Created 15

Service Ticket Validated 22,224

Service Ticket Validate Failed 509

Ticket Granting Ticket Created 21,457

Moving to production PDF last generated: October 18, 2018

Deploying Apereo CAS Page 400

Event Average Events/Day

Ticket Granting Ticket Destroyed 10,109

This chapter describes steps and configuration changes that should be considered

when moving from a development and/or test environment to a production

environment. It also describes some of the problems we have encountered after

going live, and how we corrected them.

Moving to production PDF last generated: October 18, 2018

Deploying Apereo CAS Page 401

Configuration changes
Moving the CAS server from the development environment to the test environment,

and then from the test environment to production, requires a number of changes to

the configuration settings to identify the servers in the new environment, update

encryption keys, etc. There are also some other configuration changes that should

be made (or at least considered), especially when moving to the production

environment.

Update CAS configuration settings

Several configuration settings created during the course of building the servers and

enabling various features are specific to the environment in which the servers were

built, and need to be updated when moving to another environment:

1. Several properties in etc/cas/config/cas.proprties must be updated

with values for the new environment (in the list below, moving to the

production environment is assumed):

a. The cas.server.name property must be updated with the

production server’s domain name.

b. If the production Active Directory/LDAP servers are not the same

ones as those used by the development/test environment, the

cas.authn.ldap[n].ldapUrl and

cas.authn.attributeRepository/ldapUrl properties must be

updated. The bindDn and bindCredential properties may also

need to be updated.

c. If the production environment uses different load balancers than

the development/test environment, the

cas.adminPageSecurity.ip regular expression must be updated

to match the IP addresses of the production load balancers.

d. The mongo.hosts “pseudo-property” from which the MongoDB

connection string is constructed must be updated to contain the

list of host names of the production MongoDB replica set

members.

e. New ticket granting cookie encryption keys

(cas.tgc.crypto.signing.key and

cas.tgc.crypto.encryption.key) should be generated for the

production environment.

f. New Spring Webflow encryption keys

(cas.webflow.crypto.signing.key and

Configuration changes PDF last generated: October 18, 2018

Deploying Apereo CAS Page 402

cas.webflow.crypto.encryption.key) should be generated for

the production environment.

g. Thymeleaf caching should be enabled in the production

environment by adding the spring.thymeleaf.cache property

and setting its value to true .

2. Some properties in etc/cas/config/management.properties must also be

updated:

a. The cas.server.name property must be updated with the

production server’s domain name (sso.newschool.edu).

b. The mongo.hosts “pseudo-property” from which the MongoDB

connection string is constructed must be updated to contain the

list of host names of the production MongoDB replica set

members.

3. The CAS server SSL certificate in Tomcat’s keystore must be replaced

(page 42) with the production SSL certificate.

4. New SAML IdP metadata, encryption keys, and signing keys should be

generated (page 195) for the production environment and copied to etc/

cas/saml .

5. Additional CAS administrative users (who will have access to the

management webapp and/or the dashboard) should be added to the etc/

cas/config/admusers.properties file.

6. A new Duo protected application should be created (page 167) (via the

Duo administration console) for the production CAS environment and the

duoIntegrationKey , duoSecretKey , and duoApplicationKey

components of the cas.authn.mfa.duo[n] property in etc/cas/config/

cas.properties updated with the new values.

7. If the production Google Apps environment is not the same as the one

used by the development/test environments, the key files in etc/cas/

google should be regenerated (page 394) and the new X.509 certificate

uploaded to the production Google Apps environment.

Once all of the above changes have been made in the cas-overlay-template

directory on the master build server for the environment, the build and installation

scripts (page 248) should be used to install and test the updated CAS server and

management webapp on the master build server, and then everything should be

copied to the CAS servers.

Configuration changes PDF last generated: October 18, 2018

Deploying Apereo CAS Page 403

Lock down the Tomcat ROOT application

When we initially hardened the Tomcat installation (page 39), we chose not to

remove the ROOT web application from Tomcat’s webapps directory because it can

be useful in a development/test environment to quickly determine whether Tomcat

is working properly. We even [modified the application][setup_tomcat-test-the-

tomcat-installation] to display the host name, IP address, and port number of the

Tomcat server. This information can still be useful in a production environment for

checking on load balancer issues and the like, but from a security perspective, it’s

not information that should be given to the general public.

To alleviate this problem, we can add some code to the top of the /opt/tomcat/

latest/webapps/ROOT/index.jsp (/var/lib/tomcat/ROOT/index.jsp) file around

line 18, just below this line:

<%@ page session="false" pageEncoding="UTF-8" contentType="text/htm

l; charset=UTF-8" %>

This is the code to be added:

<%

String a = request.getRemoteAddr();

if (a != null && !a.substring(0, 10).equals("192.68.50.") &&

!a.equals("192.168.1.10") && !a.equals("192.168.1.20")) {

// response.sendRedirect("https://casdev.newschool.edu/cas/logi

n");

// response.sendRedirect("https://castest.newschool.edu/cas/logi

n");

response.sendRedirect("https://sso.newschool.edu/cas/login");

}

%>

The code checks the IP address of the client host accessing the page and, if it’s

not the IT department subnet or the internal interface of one of the load balancers,

sends an HTTP redirect to the CAS login page. With this addition, any attempt to

access https://sso.newschool.edu from a non-whitelisted host will be redirected

to https://casdev.newschool.edu/cas/login .

Configuration changes PDF last generated: October 18, 2018

Deploying Apereo CAS Page 404

Note that the URL in the response.sendRedirect() call is dependent on the

environment in which this code is running.

Set a default application

Occasionally, users will inadvertently create a browser bookmark for the CAS login

page when what they (usually) mean to do is create a bookmark for the service that

directed them there. Eventually, this results in the user visiting the CAS login page

without having been directed there by a service. When this happens, and the user

successfully authenticates, he or she will end up at a generic “login successful”

page rather than at the service he or she actually wanted. Fortunately, CAS allows

a different destination to be configured by adding a line to etc/cas/config/

cas.properties :

cas.view.defaultRedirectUrl=https://my.newschool.edu

We have chosen to send users to MyNewSchool, the New School web

portal—partly because it’s a commonly-used application that is probably

(arguably?) where they meant to go anyway, but more importantly, because it’s an

application where (almost) all users have an account. Sending a user to an

application where he or she doesn’t have an account is even more confusing that

sending him or her to the generic login success page.

Create a standard location in which to store SAML SP

metadata

When we created the service registry definition for our SAML2 test client (page

213), we provided a URL for the metadataLocation attribute, telling the CAS

server that it could contact the SAML2 SP at that URL to dynamically download the

SP’s metadata. This is well and good for those SPs that support it, but at least in

our experience many, if not most, SAML2-based SaaS applications do not offer

dynamically-downloadable metadata. Instead, customers are expected to manually

download the metadata and store it somewhere locally for their SAML2 IdP (CAS)

to use.

Unfortunately, CAS does not yet support storing SAML SP metadata in a high-

availability location such as the database where the ticket registry and service

registry are stored. Therefore, ensuring that SAML SP metadata information is

replicated across all the CAS servers in the pool must be handled manually. To

make this at least a bit easier, we have chosen to maintain “master” copies of SP

metadata files in the CAS Maven overlay, so that they can be distributed alongside

any other updates to the CAS application or configuration files.

Configuration changes PDF last generated: October 18, 2018

Deploying Apereo CAS Page 405

We have created an etc/cas/saml/sp-metadata subdirectory in the cas-overlay-

template directory, and we store all third-party metadata files there. Whenever the

CAS application or configuration files are updated, this subdirectory will be included

in the files distributed by the build and installation scripts (page 248) we use for that

purpose and extracted into /etc/cas/saml/sp-metadata/ on each of the CAS

servers in the pool.

 Note: While this method has worked reasonably well for us, it’s by no

means perfect. In practice, when a new SAML2 service is added, the system

administrator responsible for doing that just places the SP metadata into

/etc/cas/saml/sp-metadata/[servicename].xml on one of the CAS servers

and manually copies it to the others with scp. Once everything is working,

someone is supposed to copy the final [servicename].xml file back to the

Maven overlay template so that it can be distributed properly in the future.

We’ve forgotten this step once or twice though, so now the checklist for

updating the Maven overlay (e.g., when a new version of CAS comes out)

includes an item to check the servers for any new metadata files and copy

them down to the overlay.

Logging to Graylog

Having multiple CAS servers behind a load balancer makes tracing things through

log files difficult. Even with “sticky” sessions on the load balancer, there’s no way to

determine in advance which server in the pool is the one to be monitoring when

trying to debug something. And if the servers are busy, going back and trying to

find the one thing you needed after the fact can be difficult, as well. Since we have

a Graylog server in our environment that lots of other things log to, it made sense

to use that to consolidate CAS logs there as well.

 Tip: Syslog, of course, is another option. But log messages in Graylog

Extended Log Format (GELF) provide significantly more information, in an

easier-to-parse format, than log messages in typical Syslog format. This

makes searching and filtering log messages much more robust on a Graylog

server than on a Syslog server.

Configure Graylog to accept input from CAS

To configure Graylog to accept input from CAS:

1. Log into the Graylog server GUI and select System > Inputs.

2. From the “Select input” drop-down, choose GELF UDP and click the green

Launch new input button.

Configuration changes PDF last generated: October 18, 2018

Deploying Apereo CAS Page 406

3. Fill in some configuration settings:

a. Under Node, choose the Graylog node that should host this input.

b. Under Title, enter something meaningful like “Production CAS

servers”.

c. Under Port, choose a UDP port number to listen on (the default

may be okay, but we chose to use different ports for the

development, test, and production pools of CAS servers).

d. Leave all the other fields at their defaults.

4. Click the maroon Save button.

Configure CAS to log to Graylog

To configure CAS to log to Graylog, edit the file etc/cas/config/log4j2.xml in the

cas-overlay-template directory. First, define a socket appender by adding the

following definition underneath all the <RollingFile appender definitions and just

above the <CasAppender> definitions (around line 45):

<Socket name="graylog" host="graylog.newschool.edu" protocol="udp" po

rt="12203">

<GelfLayout compressionType="GZIP" compressionThreshold="1024">

<KeyValuePair key="webappName" value="cas"/>

</GelfLayout>

</Socket>

Make sure that the host attribute contains the host name (or IP address) of the

Graylog server and that the port attribute contains the value used when the new

Graylog input was defined in the previous section.

 Warning: Graylog will accept input via TCP or UDP. However, if CAS is

logging to Graylog via TCP, and the Graylog server becomes unavailable for

some reason, the CAS servers can potentially run out of resources because

all available threads are blocked waiting to deliver log messages to Graylog.

We learned this the hard way—log to Graylog (or Syslog) with UDP.

Next, in the <AsyncRoot> definition (around line 108), add a reference to the

Graylog appender (the ref attribute should have the same value as the name

attribute in the <Socket> definition above):

Configuration changes PDF last generated: October 18, 2018

Deploying Apereo CAS Page 407

<AsyncRoot level="warn">

<AppenderRef ref="casFile"/>

<AppenderRef ref="graylog"/>

<!--

For deployment to an application server running as service,

delete the casConsole appender below

-->

<!-- <AppenderRef ref="casConsole"/> -->

</AsyncRoot>

In our experience, the <AsyncRoot> logger (cas.log) is the only one that needs to

be sent to Graylog. Everything that gets logged to the audit logger

(cas_audit.log) is also logged to the root logger, and the perfStatsLogger

(perfStats.log) is only logging performance statistics. On the Tomcat side,

catalina.out is only helpful if the CAS application itself is failing, and if that’s

happening in production, it’s probably isolated to a single server.

Install the modified Log4j2 configuration

Install the updated log4j2.xml file on all the CAS servers:

casprod-master# cd /opt/workspace/cas-overlay-template

casprod-master# cat etc/cas/config/log4j2.xml > /etc/cas/config/log4j

2.xml

casprod-master# cd /

casprod-master# for h in 01 02 03 04 05

> do

> tar cf - etc/cas/config/log4j2.xml | ssh casprod-srv${h} "cd /; ta

r xf -"

> done

casprod-master#

CAS monitors /etc/cas/config/log4j2.xml for changes and picks them up

automatically, so there is no need to restart the application.

Configure the management webapp to log to Graylog

Since the management webapp also runs on every server in the pool, it makes

sense to send its logs to Graylog as well (it can log to the same Graylog input as

the associated CAS servers). Repeat the steps above to add the Graylog

<Socket> definition and the Graylog <AppenderRef > to etc/cas/config/

log4j2-management.xml in the cas-management-overlay directory, and then install

the modified configuration file on all the CAS servers.

Configuration changes PDF last generated: October 18, 2018

Deploying Apereo CAS Page 408

Use an Extended Validation (EV) SSL certificate

To help users identify phishing scams that make use of a forged New School SSO

login page, we purchased an Extendned Validation (EV) SSL certificate for our

production CAS servers, which use the sso.newschool.edu host name. Because

all the most popular browsers (except Safari) display the organization name

associated with the certificate in the URL bar when an EV certificate is used, it’s

easy to instruct users to look for this to confirm that they’re accessing the “official”

login page.

Figure 27. How browsers display EV SSL certificates

Configuration changes PDF last generated: October 18, 2018

Deploying Apereo CAS Page 409

Problems encountered
For the most part, CAS 5 in production has worked quite well. However, as we

moved through the end of the Spring 2018 semester, through the summer, and

then the start of the Fall semester, we did encounter a few problems that had to be

addressed.

Incorrect MongoDB connection pool size

At the beginning of the fall semester, we began to receive support desk calls from

users who had successfully authenticated to CAS, but upon being redirected back

to the calling service, were receiving an error that the service could not locate the

service ticket. We had seen this sporadically before, and simply refreshing the

browser was usually enough to cure the problem, but it was becoming a larger

problem. We pretty quickly determined that the problem had something to do with

tickets being requested from the MongoDB ticket registry before they had been

written, but figuring out what was causing that to happen was much more difficult.

Eventually, we found the problem. It turns out that the CAS code that makes calls

to the MongoDB Java driver has not kept up with driver developments on the

MongoDB side; it is configuring the driver with deprecated property settings. This

ultimately results in the driver being configured with a connection pool that is an

order of magnitude too small—50 connections instead of 500 (the default, if non-

deprecated property settings are used). The increased load on our servers as a

result of the fall semester’s start, combined with virtual server sizes that were

barely adequate (see below) was just enough to cause the CAS servers to

occasionally deplete the connection pool.

The solution to the problem was to add parameters to the MongoDB connection

string to explicitly set the size of the connection pool back to the defaults. This was

done by changing the value of the mongo.opts “pseudo-property” in

cas.properties and cas-management.properties from

mongo.opts: &ssl=true

to

mongo.opts: &ssl=true&maxPoolSize=100&wai

tQueueMultiple=5

Problems encountered PDF last generated: October 18, 2018

Deploying Apereo CAS Page 410

Since making this change (and increasing the size of the servers, see below) we

have not seen any more occurrences of this problem.

Limit MongoDB cache size

As one step in investigating the problem described above, we took a look at the

MongoDB internal cache. By default, MongoDB will set the size of this cache to the

larger of

• 50% of (RAM - 1GB), or

• 256MB

On our 8GB servers, this results in a cache size of 3.5GB ((8GB - 1GB) × 0.5). As

it turns out, for our environment, this size performs pretty well, and it didn’t make

any sense to us to increase it. However, because we had separately made the

decision to increase the CAS servers to 12GB of memory (see below), we realized

that we needed a way to limit the size of MongoDB’s cache, or it would start using

5.5GB ((12GB - 1GB) × 0.5) on the new servers.

To limit the size of MongoDB’s cache, edit the /etc/mongodb.conf configuration

file on the master build server for the environment and locate the storage section

(around line 13) and change it from:

storage:

dbPath: /var/lib/mongo

journal:

enabled: true

engine:

mmapv1:

wiredTiger:

to

storage:

dbPath: /var/lib/mongo

journal:

enabled: true

wiredTiger:

engineConfig:

cacheSizeGB: 4

engine:

mmapv1:

Problems encountered PDF last generated: October 18, 2018

Deploying Apereo CAS Page 411

This will limit the cache size to 4GB regardless of how much memory is on the

system. Copy /etc/mongod.conf to all of the CAS servers in the environment and

restart MongoDB.

Server sizes in production

When we first went into production, the virtual servers were configured with 2

CPUs and 8GB of memory. This worked well until we entered the start of the Fall

semester (one of our heaviest load periods), when we began to notice the servers

slowing down because they were starved for resources. In part this was caused by

the two MongoDB configuration issues described above, but it was also because

things were running right on the edge already, and the additional load from the start

of the semester was enough to push them over.

We have since decided to increase the size of the virtual servers to 4 CPUs and

12GB of memory. We have kept the Java heap size limited to 4GB (which is

plenty), and have now also limited the MongoDB cache size to 4GB (see above).

This results in two-thirds of the available memory on the system being devoted to

CAS, and the remaining one-third being left for the kernel, other processes, etc.

Since making these changes, the servers have been performing very well.

Cleaning up log files

In our environment, we don’t want log files to grow without bound, nor do we want

to accumulate log files “forever.” In fact, we have configured CAS to rotate its log

file(s) every day (page 97), and we really don’t need to keep more than the last 30

days’ worth of logs on line (we can go back further via backups, if necessary, plus

we have everything in Graylog). Unfortunately, convincing Log4j2 to do this

appears to be the next best thing to impossible, and getting Tomcat’s JULI-based

logging to do it is even worse. After trying numerous configurations without any

luck, we eventually gave up and created /etc/cron.daily/caslogs :

Problems encountered PDF last generated: October 18, 2018

Deploying Apereo CAS Page 412

#!/bin/sh

#

Clean up CAS log files in /var/log/tomcat and /var/log/cas. These f

iles do

not necessarily get created every day, so deleting by age might en

d up

deleting the current file. Instead, we keep the last $NLOGS files o

f

each type.

#

PATH=/bin:/usr/bin; export PATH

TMP=/tmp/caslog$$

NLOGS=30

trap "rm -f $TMP" 0

DATEGLOB='[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]'

if [-d /var/log/tomcat]

then

cd /var/log/tomcat

for f in catalina host-manager localhost localhost_access_log man

ager

do

ls -1 ${f}.${DATEGLOB}.* | head -n -${NLOGS} > ${TMP}

if [-s ${TMP}]

then

rm -f `cat ${TMP}`

fi

done

fi

if [-d /var/log/cas]

then

cd /var/log/cas

for f in cas cas-management cas_audit perfStats

do

ls -1 ${f}-${DATEGLOB}.log | head -n -${NLOGS} > ${TMP}

if [-s ${TMP}]

then

rm -f `cat ${TMP}`

Problems encountered PDF last generated: October 18, 2018

Deploying Apereo CAS Page 413

fi

done

fi

exit 0

This script is executed every night at (approximately) midnight by cron . It will keep

the NLOGS most recent log files of each type in /var/log/cas and /var/log/

tomcat , and delete any beyond that number. It relies on all the log files having

names of the general format

[basename].YYYY-MM-DD.*

It does not make any assumptions about how often the log file is rotated; it will

always keep the most recent NLOGS files regardless of how old they are. Although

we have not seen the need to yet, the script could easily be modified to compress

the remaining log files with gzip or something else.

Fixing a bug in Duo’s WebSDK

Once we started rolling out Duo MFA, we discovered that some users—those who

were using Internet Explorer—were having difficulties using it because the “Duo

box” was not appearing after they entered their username and password. Instead,

a blank page would appear and the login process would essentially be “stuck” at

that point. To make things even more interesting, the problem only seemed to

occur when the users were accessing a SAML2-based service (SP); services that

authenticated via CAS and required Duo MFA did not exhibit the problem.

Eventually, we determined that the problem was due to a bug in the Duo Web SDK

(written by Duo Security) used by the CAS server.

How to fix the problem

Fixing the problem requires making a change to Duo-Web-v2.js and then installing

the corrected file in the CAS server. The change to be made is:

Problems encountered PDF last generated: October 18, 2018

Deploying Apereo CAS Page 414

*** Duo-Web-v2.js 2018-06-28 08:12:08.723891501 -0400

--- Duo-Web-v2-fix.js 2018-06-28 08:14:41.721450104 -0400

*** 374,380 ****

// point the iframe at Duo

iframe.src = [

'https://', host, '/frame/web/v1/auth?tx=', duoSig,

! '&parent=', encodeURIComponent(document.location.href),

'&v=2.6'

].join('');

--- 374,383 ----

// point the iframe at Duo

iframe.src = [

'https://', host, '/frame/web/v1/auth?tx=', duoSig,

! '&parent=',

! (window.postMessage ?

! encodeURIComponent(document.location.href.spli

t('?')[0]) :

! encodeURIComponent(document.location.href)),

'&v=2.6'

].join('');

To apply the patch and include it in the CAS server:

1. Download the original source from GitHub .

2. Either make the change above manually, or save it to a file and run patch

-p0 < patch.txt .

3. Feed the patched file to your favorite JavaScript minimizer (e.g., Uglify)

and save the result.

4. Copy the new minimized file to the Maven overlay at src/main/

resources/static/js/duo/Duo-Web-v2.js or, if you have configured your

own theme, at src/main/resources/static/themes/yourtheme/js/duo/

Duo-Web-v2.js , and rebuild and install the application.

Explanation of the patch

The problem is that as the web flow goes back and forth between CAS and the SP,

the query parameters that CAS puts on the end of the URL get longer and longer.

This seems to happen with all CAS/SAML2 services, but it’s much worse when one

or both sides of the SAML2 negotiation require signed and/or encrypted assertions;

the URL with query parameters can grow in length to tens of thousands of

characters.

Problems encountered PDF last generated: October 18, 2018

Deploying Apereo CAS Page 415

https://raw.githubusercontent.com/duosecurity/duo_java/master/js/Duo-Web-v2.js
http://lisperator.net/uglifyjs/

Eventually things get to the point in the webflow where CAS sends

casDuoLoginView.html to the user’s browser. This is the page that includes the

Duo Web SDK, a bunch of JavaScript that manipulates the iframe on the page

that displays the Duo dialog. To populate the Duo iframe , the Web SDK

constructs a source URL that points at the Duo back-end servers and includes as a

query parameter the full URL of the CAS server including all of its query

parameters. This is where the problem appears—because that URL is already

really, really long, the resulting source URL calling back to the Duo back-end is

even longer, and it exceeds the maximum length of a URL in Internet Explorer

(2,083 characters) causing IE11 to silently fail, and so you end up with a blank

iframe . (In our testing, Edge was also impacted, even though according to its

documentation it should not have been.)

We reported this to Duo back in May 2018 and provided a simple one-line fix,

which was just to truncate the query parameters off the CAS URL before sending it

to the Duo back-end. The response back from the Duo engineer was that by doing

that we “may experience breakage with any users using IE7 or other browsers that

don’t have window.postMessage natively supported.”

So they’re apparently, for whatever reason, trying to maintain backward

compatibility with some pretty ancient browsers— window.postMessage has been

supported by all major browsers since 2009. But okay, to help preserve their

backward compatibility we suggested a slightly “smarter” version of the patch to the

Duo engineer—one that only truncates the URL if window.postMessage is

supported by the browser (in which case it doesn’t need the URL anyway). That’s

what the patch above does. But we never got a response back to that suggestion,

so we ended up making the patch ourselves.

Problems encountered PDF last generated: October 18, 2018

Deploying Apereo CAS Page 416

https://github.com/duosecurity/duo_java/issues/4

About The New School

Our history

In 1919, a few great minds imagined a school that would rethink the purpose of

higher learning. The New School is an amalgamation of a world-famous design

school, a premier liberal arts college, a renowned performing arts school, a

legendary social research school, and other advanced degree programs, created to

challenge and support freethinkers who want to change the world.

No matter what your age or stage of life, you can find more to learn at The New

School. With over 135 undergraduate and graduate degree programs, our

university offers a more creatively inspired, rigorously relevant education than any

other. Our university’s urban academic centers in New York City, Paris, and

Mumbai offer almost 10,000 students the chance to expand their knowledge and

view of the world.

Our schools

No matter what area of study students pursue at The New School, they will

discover a unique form of creative problem solving that will forever change the way

they investigate and create. They will learn to relentlessly question convention,

collaborate across disciplines, and take risks. They will immerse themselves in a

world of critical analysis and intense scholarship. And ultimately, they will seek new

ways to effect positive change. Five progressive colleges inspire world-changing

creativity:

• Parsons School of Design

• Eugene Lang College of Liberal Arts

• College of Performing Arts

• The New School for Social Research

• Schools of Public Engagement

For more information, visit www.newschool.edu .

About The New School PDF last generated: October 18, 2018

Deploying Apereo CAS Page 417

http://www.newschool.edu/

Author information
This documentation was created by:

David A. Curry, CISSP

Director of Information Security

The New School

71 Fifth Avenue, 9th Floor

New York, New York 10003

david.curry@newschool.edu

The author would like to thank Misagh Moayyed, Dmitriy Kopylenko, Jérôme Leleu,

Travis Schmidt, and the members of the CAS Community for the help in answering

questions and suggesting solutions during the development of this project.

Author information PDF last generated: October 18, 2018

Deploying Apereo CAS Page 418

https://groups.google.com/a/apereo.org/forum/#!forum/cas-user

	
	
	Table of Contents
	Introduction
	SSO environment architecture
	References

	Leveraging the cloud (future)
	Setting up the environment
	References

	Initial setup tasks
	Ensure that all systems are up-to-date
	Install development tools on the master build server
	Install Perl test modules on the master build server
	Configure Git (optional)
	Set up SSH public key authentication (optional)

	Configure time synchronization
	Determine if NTP is already in use
	Install NTP (ntpd)
	Configure /etc/ntp.conf
	Open the NTP port in the firewall
	Enable and start ntpd

	Install Apache Tomcat on the CAS servers
	References

	Install an entropy daemon
	Install the EPEL repository
	Install haveged
	References

	Install Java
	Install Tomcat
	Install Tomcat dependencies
	OpenSSL
	Apache Portable Runtime
	Tomcat Native Library
	Apache Commons Daemon (jsvc)

	Organize the installation
	Move the conf directory to /etc/tomcat
	Move the logs directory to /var/log/tomcat
	Move the webapps directory to /var/lib/tomcat
	Move the work directory to /var/cache/tomcat/work
	Move the temp directory to /var/cache/tomcat/temp

	Harden the installation
	Create a tomcat user and tomcat group
	Set file ownership and permissions
	Remove example webapps
	Disable auto-deployment
	References

	Configure TLS/SSL settings
	Generate a private key and certificate signing request
	Import the certificate into a Java keystore
	Configure Tomcat server settings
	Disable the SHUTDOWN port
	Disable the HTTP connector
	Enable and configure the HTTPS connector
	Disable the AJP connector

	References

	Configure asynchronous request support
	References

	Configure X-Forwarded-For header processing
	References

	Tune resource caching settings
	Configure asynchronous logging support
	References

	Open TLS/SSL port in the firewall
	Configure systemd to start Tomcat
	Define Tomcat as a service unit
	Enable the Tomcat service unit

	Test the Tomcat installation
	Modify the ROOT web application to identify the server and client
	Start Tomcat
	Check that the Tomcat Native Library was correctly installed
	Access the ROOT web application

	Distribute the Tomcat installation to the CAS servers
	Create a distribution tar file
	Create an installation shell script
	Copy files to each server and run the installation script
	Test Tomcat on each server

	Configure the load balancers
	Define the CAS server nodes
	Define the CAS server pool
	Define a client SSL profile
	Define a server profile
	Define a persistence profile
	Enable the insertion of X-Forwarded-For headers
	Define the virtual interface
	Test the servers through the load balancer
	Perform a TLS/SSL check on the servers (optional)

	Install HTTPD and PHP on the client servers
	References

	Install software packages
	Configure TLS/SSL settings
	Generate private keys and certificate signing requests
	Configure HTTPD settings
	Configure TLS/SSL settings
	Check the HTTPD Configuration
	Configure PHP settings

	Open HTTP/HTTPS ports in the firewall
	Configure systemd to start HTTPD
	Test the HTTPD installation
	Create a basic web page
	Start HTTPD
	Access the server
	Perform a TLS/SSL check on the servers (optional)

	Building the CAS server
	Create a work area
	References

	Create a Maven WAR overlay project
	Clone the overlay template project
	Switch to the right branch
	Create a local branch

	Build the default server
	Configure server properties
	Configure server name information
	Configure ticket granting cookie encryption
	Configure Spring Webflow encryption
	References

	Configure logging settings
	Adjust the log file rotation strategy (optional)
	References

	Install and test the CAS application
	Create a distribution tar file
	Create an installation shell script
	Install and test on the master build server
	Install and test on the CAS servers
	Define a CAS-specific service monitor on the load balancers

	Commit changes to Git
	Adding a service registry
	References

	Add the feature and rebuild the server
	Add the JSON service registry to the project object model
	Rebuild the server
	References

	Configure the service registry
	Define the service registry in cas.properties
	Create the service registry directory
	Create a service definition file
	References

	Install and test the service registry
	Install and test on the master build server
	Install on the CAS servers

	Commit changes to Git
	Building the CAS client
	Install the mod_auth_cas plugin
	Install pre-requisites
	Clone the mod_auth_cas project
	Build the plugin
	Install the plugin on the client server
	References

	Configure HTTPD to use CAS
	Configure mod_auth_cas settings
	Create the cookie cache directory
	Restart HTTPD
	Create example content

	Test the application
	Shut down all but one of the pool servers
	Access the public site
	Access the secure area
	Restart the pool servers

	Adding LDAP support
	References

	Configuring LDAP authentication
	Add the LDAP dependency to the project object model
	Rebuild the server
	Disable use of built-in credentials
	Commit changes to Git
	References

	Configure Active Directory authentication properties
	Install and test on the master build server
	Install and test on the CAS servers
	Commit changes to Git
	References

	Configure Luminis LDAP authentication properties
	Install and test on the master build server
	Install and test on the CAS servers
	Commit changes to Git
	References

	Configuring LDAP attribute resolution and release
	Add the SAML 1.1 dependency to the project object model
	Rebuild the server
	References

	Configure attribute resolution
	Configure Active Directory attribute resolution
	Configure Luminis LDAP attribute resolution
	Configure an attribute merging strategy
	References

	Update the service registry
	Create a “return all attributes” service definition for the CAS client
	Create a “return mapped attributes” service definition for the CAS client
	References

	Update the CAS client configuration
	Update mod_auth_cas settings
	Create a new secure content area
	Update the public content page
	Restart HTTPD
	References

	Install and test the application
	Install and test on the master build server
	Install on the CAS servers
	Shut down all but one of the pool servers
	Access the public site
	Access the “return all attributes” secure area
	Access the “return mapped attributes” secure area
	Restart the pool servers

	Commit changes to Git
	Adding MFA support
	Add the Duo dependency to the project object model
	Rebuild the server
	References

	Configure Duo authentication
	Create a new Duo protected application
	Configure Duo authentication properties
	References

	Update the CAS client configuration
	Create a new secure content area
	Update mod_auth_cas settings
	Update the public content page
	Restart HTTPD

	Update the service registry
	Create a second service definition for the CAS client
	References

	Install and test the application
	Install and test on the master build server
	Install on the CAS servers
	Shut down all but one of the pool servers
	Access the public site
	Access the secure area
	Restart the pool servers

	Commit changes to Git
	Adding SAML support
	Add the SAML2 IdP dependency to the project object model
	Rebuild the server
	References

	Update the server configuration
	Adjust Tomcat settings
	Configure SAML IdP properties
	Create the metadata cache directory
	Adjust the server installation script
	References

	Update the service registry
	Create a service definition for the IdP endpoint

	Install and test the IdP
	Install and test on the master build server
	Check that the IdP is working on the master build server
	Copy CAS-generated IdP metadata to the overlay template
	Install on the CAS servers
	Check that the IdP is working on the CAS servers

	Commit changes to Git
	Building the SAML client
	Install the Shibboleth SP
	Add the Shibboleth repository to yum
	Install the Shibboleth SP
	Create a TLS/SSL certificate for the SP
	Configure systemd to start shibd
	Test that HTTPD and shibd can communicate
	References

	Configure HTTPD to use the SP
	Configure mod_shib settings
	Restart HTTPD
	Create example content

	Configure the SP
	Configure the SAML entity and IdP settings
	Set the entityID
	Set the REMOTE_USER attribute and attribute prefix
	Configure session security
	Point the SP to the IdP
	Tell the SP where to get the IdP’s metadata

	Configure attribute processing
	Enable LDAP attribute mappings
	Add custom attribute mappings

	Restart shibd
	References

	Update the service registry
	Create a service definition for the SAML client
	References

	Install and test the application
	Install and test on the master build server
	Install on the CAS servers
	Shut down all but one of the pool servers
	Access the public site
	Access the secure area
	Restart the pool servers

	Adding MFA to SAML authentication
	Testing SAML and MFA together
	References

	Commit changes to Git
	Enabling the dashboard (admin pages)
	References

	Configure admin pages properties
	Enable all the endpoints
	Configure endpoint security
	Configure the IP address pattern
	Mark the endpoints “not sensitive”
	Configure the CAS server settings

	Create the admusers.properties file
	References

	Update the service registry
	Create a service definition for the dashboard
	References

	Install and test the application
	Install and test on the master build server
	Install on the CAS servers
	Shut down all but one of the pool servers
	Access the dashboard
	Restart the pool servers

	Update the load balancer service monitor
	Commit changes to Git
	Building the management webapp
	References

	Create a Maven WAR overlay project
	Clone the overlay template project
	Switch to the right branch
	Create a local branch

	Build the webapp
	Add the JSON service registry to the project object model
	Build the webapp
	References

	Configure webapp properties
	Configure CAS server information
	Configure webapp server name
	Configure users and roles
	Delete the users.properties file

	Delete embedded servlet container properties
	Configure the JSON service registry
	Configure the stub attribute repository
	References

	Configure logging settings
	Adjust the log file rotation strategy (optional)
	References

	Update the service registry
	Create a service definition for the webapp
	References

	Install and test the webapp
	Update the distribution tar file creation script
	Update the installation shell script
	Install and test on the master build server
	Install on the CAS servers
	Shut down all but one of the pool servers
	Access the webapp
	Try editing a service registry entry
	Try creating a service registry entry
	Restart the pool servers

	Commit changes to Git
	Customizing the CAS user interface
	Start with a mock-up
	References

	How CAS themes work
	Parts of the user interface
	Modifying the user interface
	Changing decorative elements (styles and scripts)
	Changing structural elements (HTML views)
	Changing message strings

	Summary
	References

	How Thymeleaf layouts work
	Thymeleaf Layout Dialect
	Layouts
	Content templates
	The layout:title-pattern attribute

	Thymeleaf SpringStandard Dialect
	Value substitutions
	Attribute modifiers
	Text (tag body) modifiers
	Conditional evaluation
	Re-usable fragments

	The CAS templates
	References

	Add a new theme to the overlay
	Create the Maven src directory
	Define the newschool theme
	Copy in theme files from the mock-up

	Create the newschool template set
	The complete theme directory structure
	References

	Build and deploy the overlay
	Configure user interface properties
	Rebuild the server
	Install and test on the master build server
	Install on the CAS servers
	Shut down all but one of the pool servers
	References

	Overview
	Update the layout template
	Merging the <head> elements
	Merging the <body> elements
	Updating the fragments
	The logo fragment
	The footer fragment
	The bottom fragment

	Update the login view
	Updating the login view content template
	Updating the login form fragment
	Updating the text strings

	Update the logout view
	Updating the logout view template

	Update other relevant views
	Views that may need to be customized
	Error views
	Dashboard views

	Install and test the final result
	Copy the “live” files back into the overlay
	Rebuild the server
	Install and test on the master build server
	Install on the CAS servers
	Shut down all but one of the pool servers

	Commit changes to Git
	High availability
	References

	Install and configure MongoDB
	Install the MongoDB software
	Install the MongoDB repository
	Install MongoDB
	Correct directory permissions
	Configure logrotate
	Disable the mongod service on the master build server
	References

	Disable Transparent Huge Pages
	Define a service unit to disable THP
	Install and enable the service unit
	References

	Open MongoDB port in the firewall
	Create a firewalld service configuration
	Configure the firewall
	Create an ipset of source addresses
	Create a rich rule to enable access

	References

	Set up MongoDB authentication
	Create an administrative user
	Generate a SCRAM-SHA1 keyfile
	Update the MongoDB configuration file
	References

	Create the replica set
	Connect with the mongo shell
	Initiate the replica set
	Add members to the replica set
	Display the replica set configuration
	Display the status of the replica set
	Display current replication status
	Exit the mongo shell
	References

	Test the replica set
	Connect to the primary with the mongo shell
	Create some test data
	Connect to a secondary with the mongo shell
	Enable secondary member read operations
	Check that everything was replicated
	Delete the test database
	References

	Configure MongoDB to use TLS/SSL
	Generate private keys and certificate signing requests
	Combine the certificate and private key into a single .pem file
	Combine the root and intermediate certificates into a single .pem file
	Update the MongoDB configuration file
	Test the TLS/SSL configuration
	References

	Create the CAS database and user
	Create the CAS database
	Create a database user
	Test the new database and user
	References

	Setting up the ticket registry
	Update the server configuration
	Add the dependency to the project model
	Rebuild the server
	Configure MongoDB ticket registry properties
	Enable MongoDB Java driver logging
	References

	Install and test the application
	Install and test on the master build server
	Install on the CAS servers
	Test the operation of the registry

	Commit changes to Git
	Setting up the service registry
	Update the server configuration
	Update the dependency in the project model
	CAS server
	Service management webapp

	Rebuild the application
	CAS server
	Manaagement webapp

	Configure MongoDB service registry properties
	CAS server
	Management webapp

	References

	Load the MongoDB service registry from the JSON service registry
	Configure service registry auto-initialization
	Install and run on the master build server
	Verify that the MongoDB service registry was created and populated
	Shut down the application
	Remove service registry auto-initialization settings

	Install and test the application
	Delete the JSON service registry
	Install and test on the master build server
	Install on the CAS servers
	Test the operation of the registry

	Commit changes to Git
	Setting up distributed SAML metadata storage
	Setting up distributed configuration properties
	Google Apps (G Suite) integration
	Add the Google Apps dependency to the project object model
	Rebuild the server
	References

	Generate keys and certificates
	Use OpenSSL to generate the keys and certificate
	Configure Google Apps properties
	References

	Configure Google single sign-on
	Configure SSO URLs
	Upload verification certificate
	References

	Install and test the application
	Install and test on the master build server
	Install on the CAS servers
	Register Google Apps in the service registry
	Test the operation of Google Apps
	References

	Moving to production
	Configuration changes
	Update CAS configuration settings
	Lock down the Tomcat ROOT application
	Set a default application
	Create a standard location in which to store SAML SP metadata
	Logging to Graylog
	Configure Graylog to accept input from CAS
	Configure CAS to log to Graylog
	Install the modified Log4j2 configuration
	Configure the management webapp to log to Graylog

	Use an Extended Validation (EV) SSL certificate

	Problems encountered
	Incorrect MongoDB connection pool size
	Limit MongoDB cache size
	Server sizes in production
	Cleaning up log files
	Fixing a bug in Duo’s WebSDK
	How to fix the problem
	Explanation of the patch

	About The New School
	Our history
	Our schools

	Author information

